

TEST REPORT FIRES-FR-151-08-AUNE

Cable bearing system BAKS with cables

This is an electronic version of a test report which was made as a copy of test report officially issued in a paper form. The electronic version of a test report shall be used only for informative purposes. Any information listed in this test report is the property of the sponsor and shall not be used or published without written permission. Contents of this file may only be modified by the editor i.e. Testing laboratory FIRES s.r.o. Batizovce. Sponsor is allowed to publish this test report in parts only with written permission of the editor.

FIRES 004/S-06/04/2006-E-el

www.fires.sk

FIRES, s.r.o.

Notifikovaná osoba č./ Notified Body No.: 1396 Autorizovaná osoba reg. č./Approved Body No.: SK01 Osloboditeľov 282, 059 35 Batizovce, Slovakia Tel.+421 52 775 2298, Fax+421 52 7881412, e-mail: info@fires.sk, <u>www.fires.sk</u>

Testing laboratory No. 041/S-159 accredited by Slovak national accreditation service

TEST REPORT

Test report number Tested property: Test method:	Function in fire	FIRES-FR-151-08-AUNE Function in fire DIN 4102 – 12:1998-11						
Date of issue:	27. 08. 2008							
Name of the produ	uct: Cable bearing sys	tem BAKS with cables						
Manufacturer:		z Sielski, ul. Jagodne 5, Poland - producer of construction						
	04-343 Warszav Spelsberg elektr	EL S.A., Nasielska 55, va, Poland – producer of cables o sp. z o.o., Aleja Mlodych 26-28, wice Ślaskie, Poland – producer of box	es					
Sponsor:	BAKS Kazimier	z Sielski, ul. Jagodne 5, 05-480 Karcze	w, Poland					
Task No.: Specimen received Date of the fire tes Technician respon	st: 24. 07. 2008	of this report: Miroslav Hudák						
Number of pages: Test reports:	7 5	Number of appendices: Copy No.:	55 2					
Distribution list: Copy No.1:	FIRES, s.r.o., Oslobodite (electronic version)	eľov 282, SK-059 35 Batizovce, Slovak	ia					
Copy No.2:	· ,	i, ul. Jagodne 5, 05-480 Karczew, Polar	nd					
Copy No.3:	TECHNOKABEL S.A. , Nasielska 55, 04-343 Warszawa, Poland (electronic version)							
Copy No.4: Copy No.5:		i, ul. Jagodne 5, 05-480 Karczew, Polar , Nasielska 55, 04-343 Warszawa, T						

FIRES 064/S-16/06/2008-E

1. INTRODUCTION

This test report contains the results of the test carried out at the testing laboratory of FIRES s.r.o. in Batizovce. The purpose of the test was product classification. The test specimen was cable bearing system BAKS with power and communication non-halogen cables with circuit integrity maintenance. Persons witnessing the test:

Representatives of the sponsor:	Mr. Kliczek (BAKS)
	Mr. Stawikowski (BAKS)
	Mr. Kwiatkowski (TECHNOKABEL)
	Mr. Stradomski (TECHNOKABEL)
	Mr. Martinkowski (Spelsberg)
Test directed by:	Mr. Štefan Rástocký
Test carried out by:	Mr. Miroslav Hudák
Operator:	Mr. Alexander Reľovský

This report includes accreditation mark SNAS with additional mark ILAC-MRA. These marks confirm that all activities carried out by FIRES s.r.o. Batizovce, recorded in this report, are in according accreditation rules and under supervision of SNAS. SNAS is signatory of ILAC-MRA, Mutual recognition agreement (of accreditation), which is focused on promoting of international acceptance of accredited laboratory data and reducing technical barriers to trade, such as the retesting of products on markets of signatories. More information about ILAC-MRA is on <u>www.ilac.org</u>. Signatories of ILAC-MRA are e.g. SNAS (Slovakia), CAI (Czech Republic), PCA (Poland), DAP (Germany) or BMWA (Austria). Up to date list of ILAC-MRA signatories is on <u>www.ilac.org/documents/mra_signatories.pdf</u>. **Fires s.r.o. Batizovce is full member of EGOLF also, more information www.egolf.org.uk**.

Identification number	Measuring equipment	Note
F 90 002	Horizontal test furnace for fire testing	-
F 69 005	PLC system for data acquisition and control TECOMAT NS 950	-
F 40 008	Software Control Web 2000	
F 40 009	Control and communication software to PLC TECOMAT NS 950	
F 40 010	Visual and calculating software to PLC TECOMAT NS 950	-
F 40 011	Driver Tecomat – CW 2000 (software)	-
F 71 008, F 71 009	Transducer of differential pressure (from -50 to +150) Pa	pressure inside the test furnace
F 06 501, F 06 502, F 06 503, F 06 504 F 06 505, F 06 506, F 06 507, F 06 508	Plate thermometers	temperature inside the test furnace, according to EN 1363-1 a DIN 4102-2
F 06 701	Sheathed thermocouple type K \u00e9 3 mm	ambient temperature
F 69 009	PLC system for data acquisition and climate control TECOMAT TC 604	climatic conditions
F 60 001 – F 60 009	Temperature and relative air humidity sensors	climatic conditions
F 54 057	Racking meter	-
F 57 007	Digital stop-watch	-
F 96 015	Test signal panel	-

2. MEASURING EQUIPMENT

3. PREPARATION OF THE SPECIMEN

Testing laboratory didn't take off individual components of the specimen. Components take-off and its delivering to the testing laboratory were carried out by the test sponsor. Assembling of the supporting system into the test furnace was carried out by workers of the test sponsor. Mounting of cables and weights into the supporting system was carried out by workers businesses BAKS, TECHNOKABEL and Spelsberg.

4. PREPARATION OF THE TEST

4.1 DESCRIPTION OF THE SPECIMEN STRUCTURE

Test specimen comprised from cable bearing systems BAKS with accessories – trays, ladders, wire trays, clips UDF, UEF and clips OBO BETTERMANN and power and communication non-halogen cables business TECHNOKABEL S. A. and terminal boxes Spelsberg.

Cables:	NHXH $4x1,5$ RE FE180 PH30/E30 with box WKE 2 NHXH $4x16$ RE FE180 PH30/E30 with box WKE 4 NHXCH $4x1,5/1,5$ RE FE180 PH30/E30 with box WKE 2 NHXCH $4x16/16$ RE FE180 PH30/E30 with box WKE 4 NHXH $4x1,5$ RE FE180 PH90/E90 with box WKE 2 NHXH $4x16$ RE FE180 PH90/E90 with box WKE 4 NHXCH $4x1,5/1,5$ RE FE180 PH90/E90 with box WKE 2 NHXCH $4x16/16$ RE FE180 PH90/E90 with box WKE 2,3 HTKSH $1x2x1,0$ FE180 PH90/E30-E90 HTKSHekw $1x2x1,0$ FE180 PH90/E30-E90 with box WKE 2,3 HTKSHekw $1x2x1,0$ FE180 PH90/E30-E90	(5 x)(5 x
		· · · · ·

<u>Suspension track No. 1</u>: was made by three hangers (type WPCO 400) which were fixed to ceiling by two dowels (type PSRO M10x80) in spacing of 1200 mm. Booms (type WMCO 400) were fixed by screws (type SM M10 x 20) at each hanger. Holders (type UPWO) were fixed at the end of booms. Booms were fixed through these holders by threaded bar M10 with washers and nuts M10 to ceiling holder (type USOV) which was fixed to ceiling by dowel (type PSRO M10x80). Ladders (type DUOP 400H60/3, steel sheet thickness 1,5 mm, spacing of transoms 300 mm) were jointed together by junction (type LDOCH60N) with screws M8 (type SGN M8x14) and fixed to booms with screws M8 (type SGN M8x14). Load-bearing system was loaded with 20 kg/m.

<u>Suspension track No. 2</u>: was made of three consoles combined of three horizontal supports (type CWOP40H40/05) and two threaded bar (type PGM10/1x800) with washers and nuts M10 and two hangers (type USOV) which were fixed to ceiling by dowels (type PSRO M10x80) in spacing of 1200 mm. Ladders (type DGOP 400H60/3, steel sheet thickness 1,5 mm, spacing of transoms 150 mm) were fixed at upper support and were loaded with 20 kg/m. Wire trays (type KDSO 400H60/3) were fixed at other supports and were loaded with 10 kg/m.

<u>Suspension track No. 3</u>: was made by three hangers (type WPCO 800) which were fixed to ceiling by two dowels (type PSRO M10x80) in spacing of 1200 mm. Booms (type WMCO 400) were fixed by screws (type SM M10 x 20) at each hanger. Holders (type UPWO) were fixed at the end of booms. Booms were fixed through these holders by threaded bar M10 with washers and nuts M10 to ceiling holder (type USOV) which was fixed to ceiling by dowel (type PSRO M10x80). Ladders (type DGOP 400H60/3, steel sheet thickness 1,5 mm, spacing of transoms 150 mm) were fixed at central booms with screws M8 (type SGN M8x14) and were loaded with 20 kg/m. Trays (type KCOP 400H60/3, steel sheet thickness 1,5 mm) were jointed together by two junctions (type LPOPH60N)

and by sheet (type BLO400N) with screws M6 (type SGN M6x12) and fixed at other booms with screws M6 (type SGN M6x12).

<u>Suspension track No. 4</u>: was made of three consoles combined of three horizontal supports (type CWOP40H40/05) and two threaded bar (type PGM10/1x800) with washers and nuts M10 and two hangers (type USOV) which were fixed to ceiling by dowels (type PSRO M10x80) in spacing of 1200 mm. Ladders (type DGOP 400H60/3, steel sheet thickness 1,5 mm, spacing of transoms 150 mm) were fixed at central support and were loaded with 20 kg/m. Trays (type KCOP 400H60/3) were fixed at other supports and were loaded with 10 kg/m.

<u>Ceiling installation</u>: was made by cable clips (type UEF, UDF) and clips OBO (type 1015). Cable clips depending on the diameter of cable were fixed to ceiling by dowels (type SRO M6x30) and dowels (type FDN 6/5 6x35 Fischer) in spacing of 600 mm.

<u>Cable penetration</u> through the wall of test furnace was sealed by mineral wool Rockwool.

Loading with steel chain were used as the equivalent load.

More detailed information about specimen construction is shown in the drawings which form the appendix of this test report. Drawings were delivered by the sponsor of the test.

All the information about technical specifications of used materials and semi-products, information about their type sign and their producers were delivered by sponsor. This information was not subject of the specimen inspection. Parameters which were checked are quoted in paragraph 4.3 SPECIMEN INSPECTION.

4.2 DESCRIPTION OF THE SPECIMEN FIXATION

The test specimen was fixed on the ceiling of the test furnace which was created from concrete panels made of common shocked concrete of class B 20, 150 mm thick.

The type of specimen fixation into the test furnace is visible in drawing documentation and it was selected by the sponsor.

4.3 SPECIMEN INSPECTION

Before and after the fire testing, conformity of the test specimen with drawing was checked. The specimen corresponded to the drawing which create appendix of this report.

Specimen inspection consisted of visual review of the test specimen as well as size verification (number and cross sections of conductors, thickness, measurements of cables and trays).

4.4 CLIMATIC CONDITIONING

Test specimens were stored in the climatic hall and conditioned according to EN 1363-1 under the following climatic conditions:

Relative ai	r humidity [%]	Ambient air temperature [°C]				
mean	standard deviation	mean standard deviat				
48,4	3,5	23,9	0,5			

The equilibrium state of test specimen humidity was not determined. The test specimen did not comprise hygroscopic material.

5. CARRYING OUT THE TEST

5.1 TEST CONDITIONS

Conditions in the test furnace (temperature, pressure, content O_2 content) as well as conditions in the testing room (ambient temperature) corresponded to EN 1363-1 and DIN 4102-2 during the whole test. Detailed information is shown in appendices of this report or in quality records of the testing laboratory.

Values characterising environment in the testing room directly before the test:

Date of fire test	Relative air humidity [%]	Ambient air temperature [°C]				
24.07.2008	66,8	19,9				

5.2 TEST RESULTS

The measured values are shown in tables that form an integral part of this test report.

5.3 EVALUATION OF THE TEST

SPECIMENS	Time to first failure/interruption of conductor
Specimen 1: cable NHXH 4x16 RE FE180 PH30/E30 with box WKE 4	17 minutes
Specimen 2: cable NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2	77 minutes
Specimen 3: cable NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2	79 minutes
Specimen 4: cable NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4	64 minutes
Specimen 5: cable NHXH 4x16 RE FE180 PH30/E30 with box WKE 4	90 minutes no failure/interruption
Specimen 6: cable NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2	90 minutes no failure/interruption
Specimen 7: cable NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2	90 minutes no failure/interruption
Specimen 8: cable NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4	68 minutes
Specimen 9: cable NHXH 4x16 RE FE180 PH90/E90 with box WKE 4	90 minutes no failure/interruption
Specimen 10: cable NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2	90 minutes no failure/interruption
Specimen 11: cable NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2	90 minutes no failure/interruption
Specimen 12: cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4	37 minutes
Specimen 13: cable NHXH 4x16 RE FE180 PH30/E30 with box WKE 4	58 minutes
Specimen 14: cable NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2	58 minutes
Specimen 15: cable NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2	65 minutes
Specimen 16: cable NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4	63 minutes
Specimen 17: cable NHXH 4x16 RE FE180 PH90/E90 with box WKE 4	90 minutes no failure/interruption
Specimen 18: cable NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2	90 minutes no failure/interruption
Specimen 19: cable NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2	90 minutes no failure/interruption
Specimen 20: cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4	90 minutes no failure/interruption
Specimen 21: cable NHXH 4x16 RE FE180 PH90/E90 with box WKE 4	26 minutes
Specimen 22: cable NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2	90 minutes no failure/interruption
Specimen 23: cable NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2	90 minutes no failure/interruption
Specimen 24: cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4	31 minutes
Specimen 25: cable NHXH 4x16 RE FE180 PH30/E30 with box WKE 4	23 minutes
Specimen 26: cable NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2	90 minutes no failure/interruption
Specimen 27: cable NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2	20 minutes
Specimen 28: cable NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4	34 minutes
Specimen 29: cable NHXH 4x16 RE FE180 PH90/E90 with box WKE 4	90 minutes no failure/interruption
Specimen 30: cable NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2	90 minutes no failure/interruption
Specimen 31: cable NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2	90 minutes no failure/interruption
Specimen 32: cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4	90 minutes no failure/interruption
Specimen 33: cable NHXH 4x16 RE FE180 PH90/E90 with box WKE 4	25 minutes
Specimen 34: cable NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2	90 minutes no failure/interruption
Specimen 35: cable NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2	90 minutes no failure/interruption

Page:	6
-------	---

SPECIMENS	Time to first failure/interruption of conductor
Specimen 36: cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4	75 minutes
Specimen 37: cable NHXH 4x16 RE FE180 PH30/E30 with box WKE 4	90 minutes no failure/interruption
Specimen 38: cable NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2	76 minutes
Specimen 39: cable NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2	18 minutes
Specimen 40: cable NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4	64 minutes
Specimen 52A: cable HTKSHekw 1x2x1,0 FE180 PH90/E30-E90	90 minutes no failure/interruption
Specimen 52B: cable HTKSHekw 1x2x1,0 FE180 PH90/E30-E90	73 minutes
Specimens 53A,B: cables HTKSH 1x2x1,0 FE180 PH90/E30-E90	90 minutes no failure/interruption
Specimen 54A: cable HTKSH 1x2x1,0 FE180 PH90/E30-E90 with box WKE 3	90 minutes no failure/interruption
Specimen 54B: cable HTKSHekw 1x2x1,0 FE180 PH90/E30-E90 with box WKE 3	74 minutes
Specimen 55A: cable JE-H(St)H 1x2x0,8 FE180/P90/E30-E90	88 minutes
Specimen 55B: cable JE-H(St)H 1x2x0,8 FE180/P90/E30-E90	77 minutes
Specimen 56A: cable HTKSHekw 1x2x1,0 FE180 PH90/E30-E90	83 minutes
Specimen 56B: cable HTKSHekw 1x2x1,0 FE180 PH90/E30-E90	90 minutes no failure/interruption
Specimens 57A,B: cables HTKSH 1x2x1,0 FE180 PH90/E30-E90	90 minutes no failure/interruption
Specimen 58A: cable JE-H(St)H 1x2x0,8 FE180/P90/E30-E90	77 minutes
Specimen 58B: cable JE-H(St)H 1x2x0,8 FE180/P90/E30-E90	84 minutes
Specimens 59A,B: cables HTKSHekw 1x2x1,0 FE180 PH90/E30-E90	90 minutes no failure/interruption
Specimens 60A,B: cables HTKSH 1x2x1,0 FE180 PH90/E30-E90	90 minutes no failure/interruption
Specimen 61A: cable HTKSH 1x2x1,0 FE180 PH90/E30-E90 with box WKE 2	90 minutes no failure/interruption
Specimen 61B: cable HTKSHekw 1x2x1,0 FE180 PH90/E30-E90 with box WKE 2	90 minutes no failure/interruption

The fire test was discontinued in 96th minute at the request of sponsor.

Specimens S1 – S40 were tested by three-phase voltage supply 3 x 230/400V with bulbs 240V / 60 W. Specimens S52 – S61 were tested by one-phase voltage supply 1 x 110V with LED diodes 3V /0,03W.

6. CLOSING

- This report details the method of construction, the test conditions and results obtained when the specific element of construction described herein was following the procedure outlined in EN 1363-1 and DIN 4102 12:1998-11. Any significant deviation with respect to size, constructional details, loads, stresses, edges or end conditions other than those allowed under the field of direct application in the relevant test method is not covered by this report.
- Because of the nature of the fire resistance testing and consequent difficulty in quantifying the uncertainty of measurement of fire resistance, it is not possible to provide a stated degree of accuracy of the result.
- The test results refer only to the tested subjects. This test report is not an approval of the tested product by the test laboratory or the accreditation body overseeing the laboratory's activities. The test was carried out on testing equipment that is the property of FIRES Ltd. Without the written permission of the test laboratory this test report may be copied and/or distributed only as the whole. Any modifications of the test report can be made only by the fire resistance test laboratory FIRES Ltd. Batizovce.

Report checked by: Ing. Štefan Rástocký **Translated by:** Ing. Marek Rusnák

Issued by:

Ing. Štefan Rástocký leader of the testing laboratory

Responsible for the technical side of this report:

BORATORY . S. SEL . WO

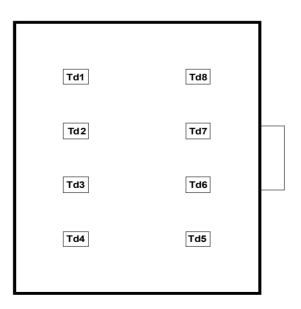
Miroslav Hudák technician of the testing laboratory

7. NORMATIVE REFERENCES

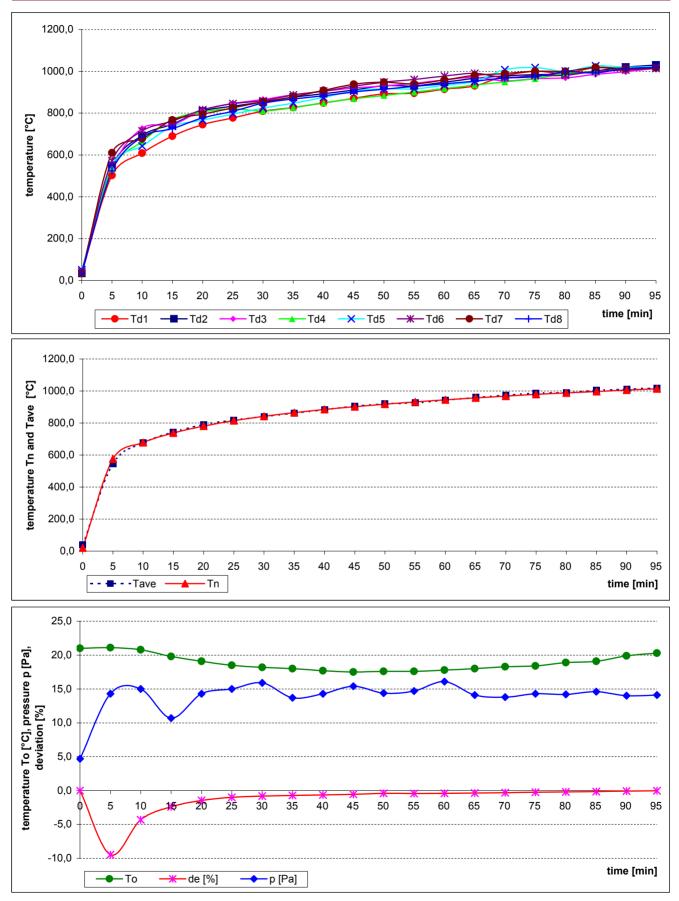
DIN 4102 – 2:1977-09	Fire behaviour of building materials and elements - requirements and testing
	Fire resistance of electric cable systems required to maintain circuit integrity
STN EN 1363-1:2001	Fire resistance tests – Part 1: General requirements

8. LIST OF APPENDICES

Appendix 1	Measured values inside the test furnace
Appendix 2	Measured values inside the test furnace / graph
Appendix 3	Measured times of tested specimens from S1 to S8
Appendix 4	Measured times of tested specimens from S9 to S16
Appendix 5	Measured times of tested specimens from S17 to S24
Appendix 6	Measured times of tested specimens from S25 to S32
Appendix 7	Measured times of tested specimens from S33 to S40
Appendix 8	Measured times of tested specimens from S52 to S61
Appendix 9	Layout of cables in the test furnace
Appendix 10	Layout of cables in the test furnace
Appendix 11 - 12	Photos taken before and after the fire test
Appendix 13 - 55	Drawings


Measured values inside the test furnace

Time	Temperature [°C]									Deviation	Pressure		
t [min]	Td1	Td2	Td3	Td4	Td5	Td6	Td7	Td8	Tave	Tn	То	d _e [%]	p [Pa]
0	37,2	33,8	44,7	41,0	50,2	41,6	32,8	34,5	39,5	20,0	21,0	0,0	4,7
5	502,6	546,2	531,8	532,8	552,5	572,3	610,4	524,0	546,6	576,2	21,1	-9,5	14,3
10	608,6	692,9	726,5	664,1	642,4	714,2	676,8	686,5	676,5	678,3	20,8	-4,3	15,0
15	690,2	747,5	744,6	769,1	736,7	761,9	767,2	726,0	742,9	738,5	19,8	-2,4	10,7
20	745,1	810,2	814,0	806,2	766,3	816,7	795,1	777,3	791,4	781,3	19,1	-1,5	14,3
25	776,9	833,4	845,9	819,9	795,3	845,8	825,7	808,9	819,0	814,6	18,5	-1,0	15,0
30	809,4	853,0	865,7	810,5	824,3	859,0	853,5	847,5	840,4	841,8	18,2	-0,8	15,9
35	827,2	875,9	888,6	826,6	848,0	887,1	877,9	867,8	862,4	864,8	18,0	-0,7	13,7
40	848,6	892,9	904,1	849,4	875,4	905,4	909,1	882,9	883,5	884,7	17,7	-0,6	14,3
45	870,8	910,3	920,7	869,3	906,1	929,1	938,3	901,4	905,8	902,3	17,5	-0,6	15,4
50	892,4	931,0	929,5	884,2	916,4	948,0	948,2	914,2	920,5	918,1	17,6	-0,4	14,4
55	894,9	930,5	942,4	900,6	915,6	960,7	940,0	928,2	926,6	932,3	17,6	-0,4	14,7
60	914,3	947,9	958,5	917,1	933,7	977,3	958,7	940,1	943,5	945,3	17,8	-0,4	16,1
65	930,6	966,2	971,1	933,9	952,1	990,1	981,1	952,4	959,7	957,3	18,0	-0,4	14,1
70	977,8	977,8	954,0	949,3	1008,0	970,0	989,1	968,1	974,3	968,4	18,3	-0,3	13,8
75	1000,0	983,8	965,1	964,7	1018,0	979,8	1001,0	974,3	985,8	978,7	18,4	-0,2	14,3
80	990,3	986,9	968,7	989,9	1001,0	980,9	1000,0	997,6	989,4	988,4	18,9	-0,2	14,2
85	1018,0	1002,0	985,6	999,1	1026,0	999,0	1019,0	992,3	1005,1	997,4	19,1	-0,1	14,6
90	1006,0	1020,0	997,7	1009,0	1020,0	1006,0	1013,0	1013,0	1010,6	1005,9	19,9	-0,1	14,0
95	1019,0	1030,0	1015,0	1019,0	1022,0	1014,0	1016,0	1019,0	1019,3	1014,0	20,3	0,0	14,1


Tave Average temperature in the test furnace calculated from plate thermometers

- Tn Standard temperature in the test furnace laid down to test guideline
- To Ambient temperature
- de Deviation of the average temperature from the standard temperature calculated according to test guideline
- p Pressure inside the test furnace measured under the ceiling of the test furnace

Layout of measuring points in the test furnace:

Measured values inside the test furnace / graph

Measured time of tested specimens from S1 to S8

Specimen	Bulbs	Time to permanent failure / interruption [min:s]
S1	1-L1	Х
	2-L2	17:36
	3-L3	Х
	4-PEN	х
	5-L1	Х
S2	6-L2	х
52	7-L3	77:31
	8-PEN	х
	9-L1	79:50
S3	10-L2	79:50
	11-L3	79:50
	12-PEN	Х
	13-L1	Х
S4	14-L2	64:23
54	15-L3	64:23
	16-PEN	х
	17-L1	no failure / interruption
S5	18-L2	no failure / interruption
	19-L3	no failure / interruption
	20-PEN	no failure / interruption
	21-L1	no failure / interruption
S6	22-L2	no failure / interruption
30	23-L3	no failure / interruption
	24-PEN	no failure / interruption
	25-L1	no failure / interruption
S7	26-L2	no failure / interruption
31	27-L3	no failure / interruption
	28-PEN	no failure / interruption
	29-L1	Х
S8	30-L2	68:43
30	31-L3	68:43
	32-PEN	Х

Specimens 1, 5: cables NHXH 4x16 RE FE180 PH30/E30 with box WKE 4
Specimens 2, 6: cables NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2
Specimens 3, 7: cables NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2
Specimens 4, 8: cables NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4

x conductor was turned off manually after permanent interruption / failure of other conductors in the cable

Measured time of tested specimens from S9 to S16

Specimen	Bulbs	Time to permanent failure / interruption [min:s]
	33-L1	no failure / interruption
S9	34-L2	no failure / interruption
59	35-L3	no failure / interruption
	36-PEN	no failure / interruption
	37-L1	no failure / interruption
S10	38-L2	no failure / interruption
S10	39-L3	no failure / interruption
	40-PEN	no failure / interruption
	41-L1	no failure / interruption
S11	42-L2	no failure / interruption
511	43-L3	no failure / interruption
	44-PEN	no failure / interruption
	45-L1	х
S12	46-L2	x
512	47-L3	37:43
	48-PEN	x
	49-L1	х
S13	50-L2	58:08
515	51-L3	х
	52-PEN	х
	53-L1	58:12
S14	54-L2	58:12
514	55-L3	x
	56-PEN	x
	57-L1	65:10
S15	58-L2	x
515	59-L3	x
	60-PEN	х
	61-L1	63:23
S16	62-L2	63:23
510	63-L3	х
	64-PEN	х

Specimen 9: cable NHXH 4x16 RE FE180 PH90/E90 with box WKE 4	
Specimen 10: cable NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2	
Specimen 11: cable NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2	
Specimen 12: cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4	
Specimen 13: cables NHXH 4x16 RE FE180 PH30/E30 with box WKE 4	
Specimen 14: cable NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2	
Specimen 15: cable NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2	
Specimen 16: cable NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4	

x conductor was turned off manually after permanent interruption / failure of other conductors in the cable

Appendix: 5

Measured time of tested specimens from S17 to S24

		Time to permanent
Specimen	Bulbs	failure / interruption
	65-L1	[min:s]
S17		no failure / interruption
	66-L2	no failure / interruption
	67-L3	no failure / interruption
	68-PEN	no failure / interruption
	69-L1	no failure / interruption
S18	70-L2	no failure / interruption
010	71-L3	no failure / interruption
	72-PEN	no failure / interruption
	73-L1	no failure / interruption
S19	74-L2	no failure / interruption
0.10	75-L3	no failure / interruption
	76-PEN	no failure / interruption
	77-L1	no failure / interruption
S20	78-L2	no failure / interruption
020	79-L3	no failure / interruption
	80-PEN	no failure / interruption
	81-L1	26:07
S21	82-L2	x
521	83-L3	26:07
	84-PEN	х
	85-L1	no failure / interruption
S22	86-L2	no failure / interruption
322	87-L3	no failure / interruption
	88-PEN	no failure / interruption
	89-L1	no failure / interruption
S 23	90-L2	no failure / interruption
5 23	91-L3	no failure / interruption
	92-PEN	no failure / interruption
	93-L1	Х
004	94-L2	31:03
S24	95-L3	X
	96-PEN	X

Specimens 17, 21: cables NHXH 4x16 RE FE180 PH90/E90 with box WKE 4
Specimens 18, 22: cables NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2
Specimens 19, 23: cables NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2
Specimens 20, 24: cables NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4

x conductor was turned off manually after permanent interruption / failure of other conductors in the cable

Measured time of tested specimens from S25 to S32

Specimen	Bulbs	Time to permanent failure / interruption [min:s]
005	97-L1	[mm.s] X
	98-L2	23:12
S25	99-L3	23:12
	100-PEN	X
	101-L1	no failure / interruption
000	102-L2	no failure / interruption
S26	103-L3	no failure / interruption
	104-PEN	no failure / interruption
	105-L1	X
S 27	106-L2	X
S27	107-L3	20:38
	108-PEN	X
	109-L1	Х
000	110-L2	34:40
S28	111-L3	x
	112-PEN	Х
	113-L1	no failure / interruption
S29	114-L2	no failure / interruption
529	115-L3	no failure / interruption
	116-PEN	no failure / interruption
	117-L1	no failure / interruption
S30	118-L2	no failure / interruption
330	119-L3	no failure / interruption
	120-PEN	no failure / interruption
	121-L1	no failure / interruption
S31	122-L2	no failure / interruption
551	123-L3	no failure / interruption
	124-PEN	no failure / interruption
	125-L1	no failure / interruption
S32	126-L2	no failure / interruption
002	127-L3	no failure / interruption
	128-PEN	no failure / interruption

Specimen 25:	cables NHXH 4x16 RE FE180 PH30/E30 with box WKE 4
Specimen 26:	cables NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2
Specimen 27:	cables NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2
Specimen 28:	cables NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4
Specimen 29:	cables NHXH 4x16 RE FE180 PH90/E90 with box WKE 4
Specimen 30:	cables NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2
	cables NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2
Specimen 32:	cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4

x conductor was turned off manually after permanent interruption / failure of other conductors in the cable

Appendix: 7

Measured time of tested specimens from S33 to S40

Specimen	Bulbs	Time to permanent failure / interruption
	100 1	[min:s] 25:26
S33	129-L1	
	130-L2 131-L3	X
	131-L3	X
	132-PEN 133-L1	X no foilure / interruption
	133-L1 134-L2	no failure / interruption
S34	134-L2 135-L3	no failure / interruption
001		no failure / interruption
	136-PEN	no failure / interruption
	137-L1	no failure / interruption
S35	138-L2	no failure / interruption
	139-L3	no failure / interruption
	140-PEN	no failure / interruption
	141-L1	75:49
S36	142-L2	75:49
	143-L3	X
	144-PEN	Х
	145-L1	no failure / interruption
S37	146-L2	no failure / interruption
001	147-L3	no failure / interruption
	148-PEN	no failure / interruption
	149-L1	76:30
S38	150-L2	76:30
000	151-L3	x
	152-PEN	х
	153-L1	18:15
S39	154-L2	х
009	155-L3	18:15
	156-PEN	х
	157-L1	64:06
S40	158-L2	x
540	159-L3	64:06
	160-PEN	Х

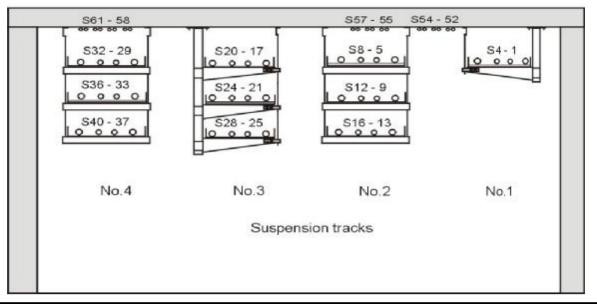
Specimen 33: cable NHXH 4x16 RE FE180 PH90/E90 with box WKE 4
Specimen 34: cable NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2
Specimen 35: cable NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2
Specimen 36: cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4
Specimen 37: cable NHXH 4x16 RE FE180 PH30/E30 with box WKE 4
Specimen 38: cable NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2
Specimen 39: cable NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2
Specimen 40: cable NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4

x conductor was turned off manually after permanent interruption / failure of other conductors in the cable

Appendix: 8

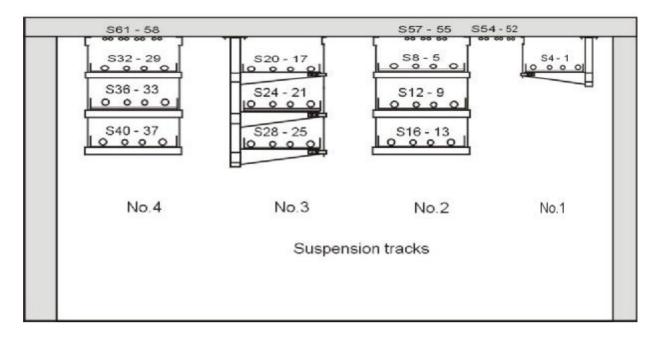
Measured time of tested specimens from S52 to S61

		Time to permanent		
Specimen	Bulbs	failure / interruption		
Opecimen	Duibs	[min:s]		
	209-L	no failure / interruption		
S52A	210-PEN	no failure / interruption		
	210-PEN 211-L	73:00		
S52B	212-PEN	X		
	212-1 LIN 213-L	no failure / interruption		
S53A	214-PEN	no failure / interruption		
0.505	214 F EN	no failure / interruption		
S53B	216-PEN	no failure / interruption		
0.5.4.4	217-L	no failure / interruption		
S54A	218-PEN	no failure / interruption		
0.5.45	219-L	74:13		
S54B	220-PEN	x		
0554	221-L	88:25		
S55A	222-PEN	X		
S55A S55B S56A S56B	223-L	77:19		
	224-PEN	x		
S56A	225-L	83:38		
	226-PEN	x		
S56B	227-L	no failure / interruption		
	228-PEN	no failure / interruption		
S56B S57A	229-L	no failure / interruption		
557A	230-PEN	no failure / interruption		
0.EZD	231-L	no failure / interruption		
201B	232-PEN	no failure / interruption		
CE0A	233-L	77:00		
AOCC	234-PEN	x		
SE0D	235-L	84:12		
000D	236-PEN	x		
S55B S56A S56B	237-L	no failure / interruption		
309A	238-PEN	no failure / interruption		
\$50P	239-L	no failure / interruption		
209D	240-PEN	no failure / interruption		
S60A	241-L	no failure / interruption		
JUUA	242-PEN	no failure / interruption		
SEUB	243-L	no failure / interruption		
3000	244-PEN	no failure / interruption		
S61A	245-L	no failure / interruption		
JUIA	246-PEN	no failure / interruption		
S61D	247-L	no failure / interruption		
SUID	248-PEN	no failure / interruption		


Specimens 52, 56, 59: cables HTKSHekw 1x2x1,0 FE180 PH90/E30-E90	
Specimens 53, 57, 60: cables HTKSH 1x2x1,0 FE180 PH90/E30-E90	
Specimen 54A: cable HTKSH 1x2x1,0 FE180 PH90/E30-E90 with box WKE 3	
Specimen 54B: cable HTKSHekw 1x2x1,0 FE180 PH90/E30-E90 with box WKE 3	
Specimens 55, 58: cables JE-H(St)H 1x2x0,8 FE180/P90/E30-E90	
Specimen 61A: cable HTKSH 1x2x1,0 FE180 PH90/E30-E90 with box WKE 2	
Specimen 61B: cable HTKSHekw 1x2x1,0 FE180 PH90/E30-E90 with box WKE 2	

x conductor was turned off manually after permanent interruption / failure of other conductors in the cable

Signal cables were tested by three-phase voltage supply 1 x 110V with LED diods 3V / 0,3W. Circuit breakers with rating 3 A were used.


Appendix:9

Layout of cables in the test furnace

Specimen 1: cable NHXH 4x16 RE FE180 PH30/E30 with box WKE 4	Specimens placed on the ladders
Specimen 2: cable NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2	DUOP 400H60/3 (BAKS).
Specimen 3: cable NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2	Suspension track No.1
Specimen 4: cable NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4	
Specimen 5: cable NHXH 4x16 RE FE180 PH30/E30 with box WKE 4	Specimens placed on the ladders
Specimen 6: cable NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2	DGOP 400H60/3 (BAKS).
Specimen 7: cable NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2	Suspension track No.2
Specimen 8: cable NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4	
Specimen 9: cable NHXH 4x16 RE FE180 PH90/E90 with box WKE 4	Specimens placed in the wire trays
Specimen 10: cable NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2	KDSO 400H60/3 (BAKS)
Specimen 11: cable NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2	Suspension track No.2
Specimen 12: cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4	
Specimen 13: cable NHXH 4x16 RE FE180 PH30/E30 with box WKE 4	On a sime one related in the using these
Specimen 14: cable NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2	Specimens placed in the wire trays KDSO 400H60/3 (BAKS)
Specimen 15: cable NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2	Suspension track No.2
Specimen 16: cable NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4	Suspension track No.2
Specimen 17: cable NHXH 4x16 RE FE180 PH90/E90 with box WKE 4	
Specimen 18: cable NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2	Specimens placed in the cable trays
Specimen 19: cable NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2	KCOP 400H60/3 (BAKS).
Specimen 20: cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4	Suspension track No.3
Specimen 21: cable NHXH 4x16 RE FE180 PH90/E90 with box WKE 4	
Specimen 22: cable NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2	Specimens placed on the ladders
Specimen 23: cable NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2	DGOP 400H60/3 (BAKS).
Specimen 24: cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4	Suspension track No.3
Specimen 25: cable NHXH 4x16 RE FE180 PH30/E30 with box WKE 4	
Specimen 26: cable NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2	Specimens placed in the cable trays
Specimen 27: cable NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2	KCOP 400H60/3 (BAKS).
Specimen 28: cable NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4	Suspension track No.3
Specimen 29: cable NHXH 4x16 RE FE180 PH90/E90 with box WKE 4	
Specimen 30: cable NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2	Specimens placed in the cable trays
Specimen 31: cable NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2	KCOP 400H60/3 (BAKS).
Specimen 32: cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4	Suspension track No.4
Specimen 33: cable NHXH 4x16 RE FE180 PH90/E90 with box WKE 4	
Specimen 34: cable NHXCH 4x1,5/1,5 RE FE180 PH90/E90 with box WKE 2	Specimens placed on the ladders
Specimen 35: cable NHXH 4x1,5 RE FE180 PH90/E90 with box WKE 2	DGOP 400H60/3 (BAKS).
Specimen 36: cable NHXCH 4x16/16 RE FE180 PH90/E90 with box WKE 4	Suspension track No.4
Specimen 37: cable NHXH 4x16 RE FE180 PH30/E30 with box WKE 4	
Specimen 38: cable NHXCH 4x1,5/1,5 RE FE180 PH30/E30 with box WKE 2	Specimens placed in the cable trays
	KCOP 400H60/3 (BAKS).
Specimen 39: cable NHXH 4x1,5 RE FE180 PH30/E30 with box WKE 2	Suspension track No.4
Specimen 40: cable NHXCH 4x16/16 RE FE180 PH30/E30 with box WKE 4	

Layout of cables in the test furnace

Specimens 52: cables HTKSHekw 1x2x1,0 FE180 PH90/E30-E90 Specimens 53: cables HTKSH 1x2x1,0 FE180 PH90/E30-E90	Specimens placed in ceiling clips OBO (BETTERMANN) in spacing of 600 mm
Specimen 54A: cable HTKSH 1x2x1,0 FE180 PH90/E30-E90 with box WKE 3	Specimens placed in ceiling clips UDF
Specimen 54B: cable HTKSHekw 1x2x1,0 FE180 PH90/E30-E90 with box WKE 3	(BAKS) in spacing of 600 mm
Specimens 55: cables JE-H(St)H 1x2x0,8 FE180/P90/E30-E90	Specimens placed in ceiling clips OBO
Specimens 56: cables HTKSHekw 1x2x1,0 FE180 PH90/E30-E90	(BETTERMANN) in spacing of 600 mm
Specimens 57: cables HTKSH 1x2x1,0 FE180 PH90/E30-E90 Specimens 58: cables JE-H(St)H 1x2x0,8 FE180/P90/E30-E90	Specimens placed in ceiling clips OBO
Specimens 59: cables HTKSHekw 1x2x1,0 FE180 PH90/E30-E90 Specimens 60: cables HTKSH 1x2x1,0 FE180 PH90/E30-E90	(BETTERMANN) in spacing of 600 mm
Specimen 61A: cable HTKSH 1x2x1,0 FE180 PH90/E30-E90 with box WKE 2	Specimens placed in ceiling clips UEF
Specimen 61B: cable HTKSHekw 1x2x1,0 FE180 PH90/E30-E90 with box WKE 2	(BAKS) in spacing of 600 mm

Appendix:10

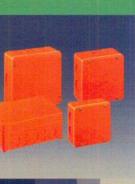
Photos taken before the test

Photos taken after the termination of the test

FIR	ES s.r.o.	Dátum/Date 24.09.208		
FIRE RE Dokument Document	NO FILES-F	Poople/Signature Poople/Signature Poople/Signature Terminal Boxes		
WKE 2 (5 x 6?) 100 x 100 x 50 mm	Appendix No. IP 54	Terminal box according to E DIN IEC 60998-2-5, $U_i = 450 \text{ V}$, with guaranteed flame protection E 30 / E 60 / E 90 in accordance with DIN 4102 part 12	Order No. I	Packing Qty
	M25 M25 M25 M25 Entries	WKE 2 (5 x 6 ²) as continuity box 0.5 to 6 mm ² and terminal box 0.5 to 1.5 mm ² , with 5-pole terminal block, Number of conductors per clamping point: $8 \times 0.5^2/4 \times 0.75^2/6 \times 1.0^2/6 \times 1.5^2/2 \times 2.5^2/2 \times 4.0^2/2 \times 6.0^2$, made from special high temperature resistant ceramic with wall plug set, IP 54 adapters and M25 blanking plugs, seal range 9 - 18.5 mm	860 202 01	12/1
WKE 3 (5 x 10 ²) 115 x 115 x 66 mm	IP 54	Terminal box according to E DIN IEC 60998-2-5, $U_{j} = 450$ V, with guaranteed flame protection E 30 / E 60 / E 90 in accordance with DIN 4102 part 12		
	M32 M32 M32 M32 M32 M32 M32 M32 M32 M32	WKE 3 (5 x 10 ²) as continuity box 1.0 to 10 mm ² and terminal box 1.0 to 4 mm ² , with 5-pole terminal block, number of conductors per clamping point: $10 \times 1.0^{2}/8 \times 1.5^{2}/6 \times 2.5^{2}/4 \times 4.0^{2}/2 \times 6.0^{2}/2 \times 10^{2}$, made from special high temperature resistant ceramic, with wall plug set, IP 54 adapters and blanking plugs M32, seal range 13 - 23 mm, with lead seal set	860 203 01	10/1
WKE 4 (5 x 16 ²) 165 x 165 x 76 mm	IP 54	Terminal box according to E DIN IEC 60998-2-5, $U_j = 450 \text{ V}$, with guaranteed flame protection E 30 / E 60 / E 90 in accordance with DIN 4102 part 12		
	02W X Z 02W X	WKE 4 (5 x 16 ²) as continuity box 1.5 to 16 mm ² and terminal box 1.5 to 6 mm ² , with 5-pole terminal block, number of conductors per clamping point: $10 \times 1.5^2 / 8 \times 2.5^2 / 6 \times 4.0 2 / 4 \times 6.0^2 / 2 \times 10^2 / 2 \times 16^2$, made from special high temperature resistant ceramic, with wall plug set, IP 54 adapters and blanking plugs M20, seal range 17 - 30 mm, with lead seal set	860 204 01	8/1
WKE 4 (8 x 6 ²) 165 x 165 x 76 mm	IP 54	Terminal box according to E DIN IEC 60998-2-5, $U_i = 450 V$, with guaranteed flame protection E 30 / E 60 / E 90 in accordance with DIN 4102 part 12		
	OCM X Z OFW Z OFW X OFW	WKE 4 (8 x 6 ²) as continuity box 0.5 to 6 mm ² and terminal box 0.5 to 1.5 mm ² , with 8-pole terminal block, Number of conductors per clamping point: $8 \times 0.5^2 / 4 \times 0.75^2 / 6 \times 1.0^2 / 6 \times 1.5^2 / 2 \times 2.5^2 / 2 \times 4.0^2 / 2 \times 6.0^2$, made from special high temperature resistant ceramic, with wall plug set IP 54, adapters and M20 blanking plugs, seal range 8 - 13.5 mm and M40, seal range 17-30 mm, with lead seal set	860 214 01	8/

Tel.: +49 (0) 23 55 / 8 92-146 • Fax: +49 (0) 23 55 / 8 92-746 • eMail: info@spelsberg.de • www.spelsberg.com 45

Terminal Boxes WKE 2 - 5

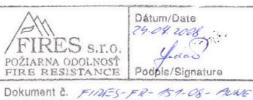

High degree of safety Due to thermosetting plastic

enclosure (no danger of shortcircuit due to metal walls)

Flexible cable entries Decide on-site which membrane must be opened

Complete range of accessories All terminal boxes, including

terminal, in-feed connectors and fire protection dowels for concrete


Detailed information about the conductors and the manufacturers can be found on the internet in <u>www.spelsberg.com</u> or simply request the test report by fax: Phone: +49 (0) 23 55 / 892-146, fax: +49 (0) 23 55 / 892-746

Authorised for use with the following cables:

- Ingress protection to IP 54
- Real functional maintenance in the classes E30 to E90 according to DIN 4102, part 12
- Halogen-free thermosetting plastic
- Flexible wiring
- Can be sealed
- Self-extinguishing
- Complete product range including accessories
- Testing certificate of the MPA (materialtesting institute
- UL 94-V0
- VDE-authorised
- Colour like RAL 2004

WKE 2 to WKE 5	E30	E60	E90		
Supply cables (n x 1.5², to n x 16²) NHXH FE 180 NHXCH (Nearly all standard cables E30 / E60 / E90 of leading manufacturers)	X 13 pieces	X 7 pieces	pieces	M RES s.r.o.	Dátum/Date 24.04.2428
Control cables (mx 0.8) JE-H(St)H Bd FE 180 (Nearly all standard cables	X 8	X	FIRE	RNA ODOLNOSŤ RESISTANCE	Podols/Signature
E30 / E60 / E90 of leading manufacturers)	pieces	pieces	piecesilahs	6./Aspendix NS.	and the second

Tel.: +49 (0) 23 55 / 8 92-146 • Fax: +49 (0) 23 55 / 8 92-746 • eMail: info@spelsberg.de • www.spelsberg.com 47

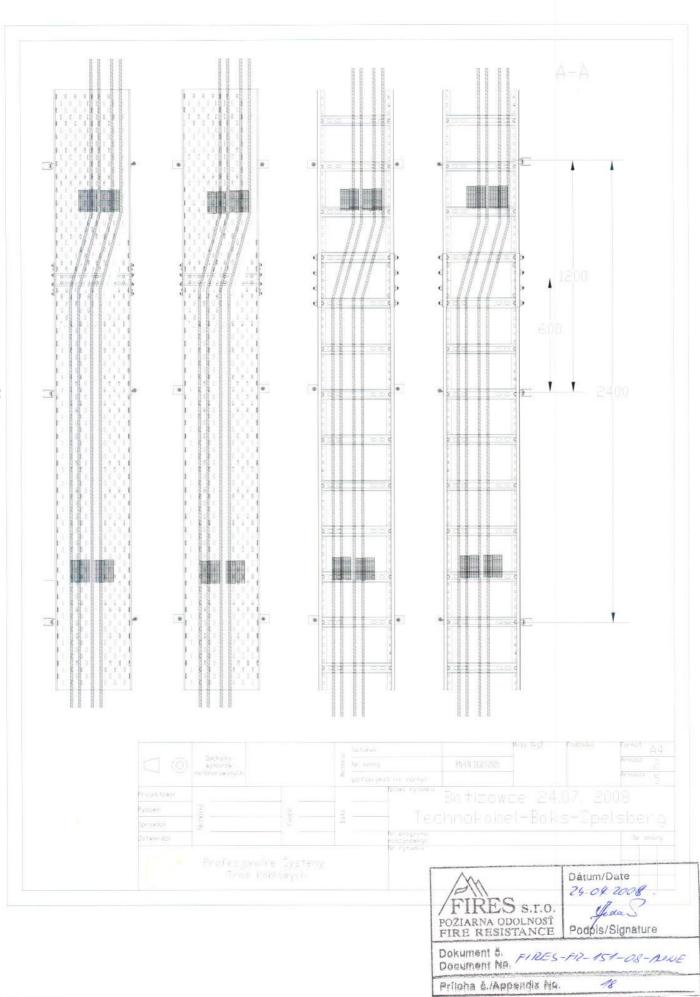
Data 24.07.2008

BAKS -TECHNOKABEL-SPELBERG Badania FIRES Słowacja

Prílöhä č./Appendix No. 5

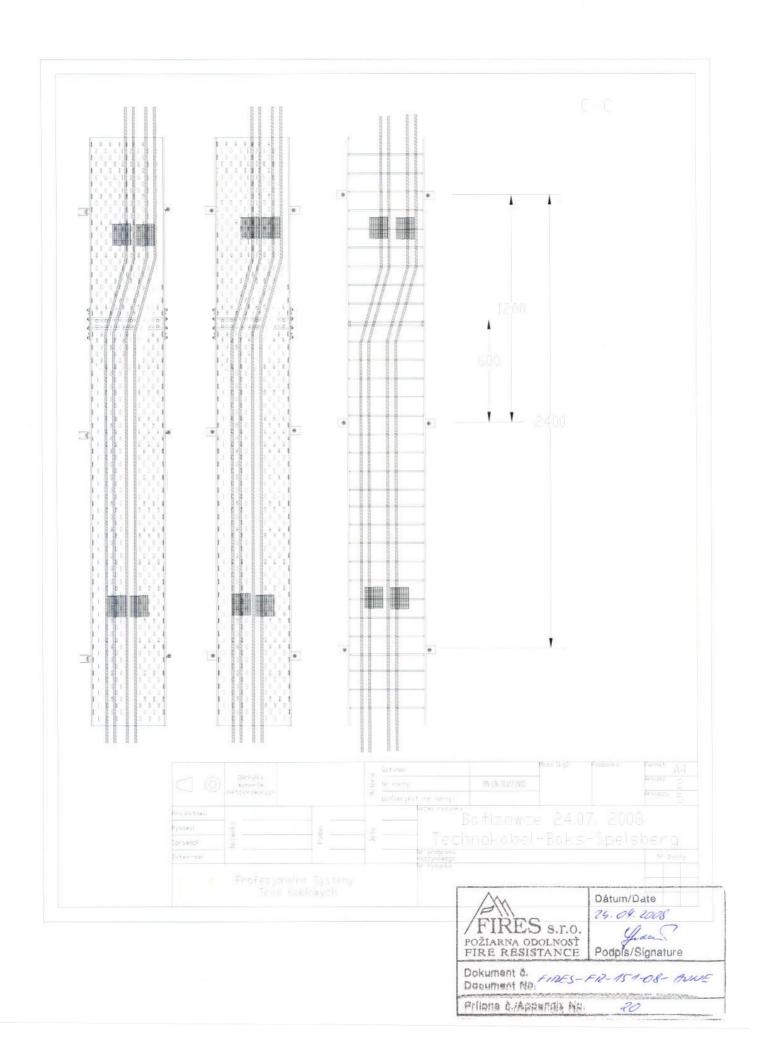
F	T	Symbol kaba	Pozycja	Przekrój kabla	Konstrukcja mocowania, odległość, obciążenie
32	1	NHXCH FE 180 E90 +WKE4	1	4x 16/16	Korytko kablowe KC0P 400H60/
31	2	NHXH FE 180 E90 +WKE2		4x 1,5	B-400 1.2 m /10kg/m / grubość blachy 1,5 mm Mocowanie na prętach gwintowanych
30	3	NHXCH FE 180 E90 +WKE2		4x 1,5/1,5	PGM10/, ceownika CWOP 40H40/05,
29	4	NHXH FE 180 E90 +WKE4		4x 16	uchwytu UPWO do betonu za pomocą kołków rozporowych PSRO M10x 80
36	5	NHXCH FE 180 E90 +WKE4	2	4x 16/16	Leiter DGOP 400H60
35	6	NHXH FE 180 E90 +WKE2		4x 1,5	Drabinka kablowa DGOP 400H60/ B-400/ 1.2 m / 20kg/m / grubość blachy 1,5 mm
34	7	NHXCH FE 180 E90 +WKE2		4x 1,5/1,5	Mocowanie : PGM10/, ceownik CWOP 40H40/05, uchwytu UPWO do betonu za
33	8	NHXH FE 180 E90 +WKE4		4x 16	pomocą kołków rozporowych PSRO M10x 80
40	9	NHXCH FE 180 E30 +WKE4	3	4x 16/16	Korytko kablowe KC0P 400H60/
39	10	NHXH FE 180 E30 +WKE2		4x 1,5	B-400 1.2 m /10kg/m / grubość blachy 1,5 mm Mocowanie na prętach gwintowanych
38	11	NHXCH FE 180 E30 +WKE2		4x 1,5/1,5	PGM10/, ceownika CWOP 40H40/05, uchwytu UPWO do betonu za pomocą kołków
37	12	NHXH FE 180 E30 +WKE4		4x 16	rozporowych PSRO M10x 80
20	13	NHXCH FE 180 E90 +WKE4	4	4x 16/16	Korytko kablowe KC0P 400H60/
19	14	NHXH FE 180 E90 +WKE2		4x 1,5	B-400 1.2 m /10kg/m / grubość blachy 1,5 mm Mocowanie: wspornik WPCO, wysięgnik
18	15	NHXCH FE 180 E90 +WKE2		4x 1,5/1,5	WMCO 400, pręt gwintowany PGM10/, uchwytu UPWO do betonu za pomocą kołków
17	16	NHXH FE 180 E90 +WKE4		4x 16	rozporowych PSRO M10x 80
24	17	NHXCH FE 180 E90 +WKE4	5	4x 16/16	Drabinka kablowa DGOP 400H60/
23	18	NHXH FE 180 E90 +WKE2		4x 1,5	B-400 /1.2 m / 20kg/m grubość blachy 1,5 mm Mocowanie: wspornik WPCO, wysięgnik
22	19	NHXCH FE 180 E90 +WKE2		4x 1,5/1,5	WMCO 400, pręt gwintowany PGM10/, – uchwytu UPWO do betonu za pomocą kołków
21	20	NHXH FE 180 E90 +WKE4		4x 16	rozporowych PSRO M10x 80
28	21	NHXCH FE 180 E30 +WKE4	6	4x 16/16	Korytko kablowe KC0P 400H60/
27	22	NHXH FE 180 E30 +WKE2		4x 1,5	 B-400 1.2 m /10kg/m / grubość blachy 1,5 mm Mocowanie: wspornik WPCO, wysięgnik
26	23	NHXCH FE 180 E30 +WKE2		4x 1,5/1,5	WMCO 400, pręt gwintowany PGM10/, uchwytu UPWO do betonu za pomocą kołków
25	24	NHXH FE 180 E30 +WKE4		4x 16	rozporowych PSRO M10x 80
8	25	NHXCH FE 180 E30 +WKE4	7	4x 16/16	Leiter DGOP 400H60
7	26	NHXH FE 180 E30 +WKE2		4x 1,5	 Drabinka kablowa DGOP 400H60/ B-400/ 1.2 m / 20kg/m / grubość blachy 1,5 mm
6	27	NHXCH FE 180 E30 +WKE2		4x 1,5/1,5	Mocowanie : PGM10/, ceownik CWOP 40H40/05, uchwytu UPWO do betonu za
5	28	NHXH FE 180 E30 +WKE4		4x 16	pomocą kołków rozporowych PSRO M10x 80
12	29	NHXCH FE 180 E90 +WKE4	8	4x 16/16	Korytko siatkowe KDS 400H60/
11	30	NHXH FE 180 E90 +WKE2		4x 1,5	B-400/ 1.2 m / 10kg/m / Ópreta 4,5 mm Mocowanie na pretach gwintowanych
10	31	NHXCH FE 180 E90 +WKE2		4x 1,5/1,5	PGM10/, ceownika CWOP 40H40/05,
9	32	NHXH FE 180 E90 +WKE4		4x 16	uchwytu UPWO do betonu za pomocą kołków rozporowych PSRO M10x 80
16	33	NHXCH FE 180 E30 +WKE4	9	4x 16/16	Korytko siatkowe KDS 400H60/
15	34	NHXH FE 180 E30 +WKE2		4x 1,5	B-400/ 1.2 m / 10kg/m / Ópreta 4,5 mm Mocowanie na pretach gwintowanych
14	35	NHXCH FE 180 E30 +WKE2		4x 1,5/1,5	PGM10/, ceownika CWOP 40H40/05,
13	36	NHXH FE 180 E30 +WKE4		4x 16	uchwytu UPWO do betonu za pomocą kołków rozporowych PSRO M10x 80
					nonion respondingen rono mitor ou

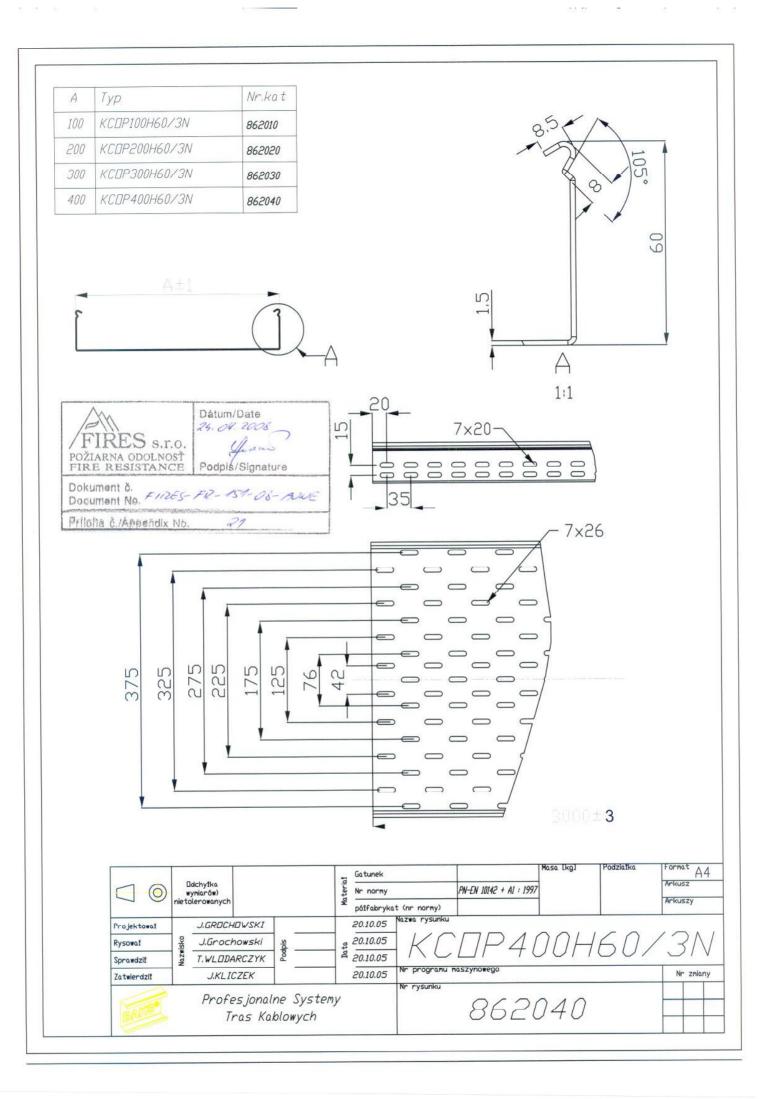

F	T	Symbol ke	ıba	Pozycja	Przekrój kabla	Konstrukcja mocowania, odległość, obciążenie
4	37	NHXCH FE 180 E30	+WKE4	10	4x 16/16	Drabinka kablowa DUOP 400H60/
3	38	NHXH FE 180 E30	+WKE2		4x 1,5	B-400 /1.2 m / 20kg/m grubość blachy 1,5 mm Mocowanie: wspornik WPCO, wysięgnik
2	39	NHXCH FE 180 E30	+WKE2		4x 1,5/1,5	WMCO 400, pręt gwintowany PGM10/, uchwytu UPWO do betonu za pomocą kołków
1	40	NHXH FE 180 E30	+WKE4		4x 16	rozporowych PSRO M10x 80
61B	41	HTKSH ekw	+WKE2	11	1x2x1	Uchwyt kablowy UEF Mocowanie do
61A	42	HTKSH			1x2x1	betonu co 0.6m za pomocą kołków rozporowych SRO M6x 30
60B	43	HTKSH		12	1x2x1	Uchwyt kablowy firmy OBO 1015/2
60A	44	HTKSH			1x2x1	Mocowanie do betonu co 0.6m za pomocą kołków rozporowych FDN 6/5 (6 x 35)
59B	45	HTKSH ekw			1x2x1	firmy FISCHER
59A	46	HTKSH ekw		-	1x2x1	_
58B	47	JE-H(St)H 1x2x 0.8		-	1x2x 0.8	_
58A	48	JE-H(St)H 1x2x 0.8			1x2x 0.8	
57B	49	HTKSH		13	1x2x1	Uchwyt kablowy firmy OBO 1015
57A	50	HTKSH			1x2x1	Mocowanie do betonu co 0.6m za pomocą kołków rozporowych FDN 6/5 (6 x 35)
56B	51	HTKSH ekw		1	1x2x1	firmy FISCHER
56A	52	HTKSH ekw			1x2x1	_
55B	53	JE-H(St)H 1x2x 0.8		-	1x2x 0.8	_
55A	54	JE-H(St)H 1x2x 0.8			1x2x 0.8	_
54B	55	HTKSH ekw	+WKE3	14	1x2x1	Uchwyt kablowy UDF Mocowanie do
54A	56	HTKSH			1x2x1	betonu co 0.6m za pomocą kołków rozporowych SRO M6x 30
53B	57	HTKSH		15	1x2x1	Uchwyt kablowy firmy OBO 1015
53A	58	HTKSH			1x2x1	Mocowanie do betonu co 0.6m za pomocą kołków rozporowych SRO M6x 30
52B	59	HTKSH ekw			1x2x1	- Kolkow Tozporowych SKO Mox 50
52A	60	HTKSH ekw		-	1x2x1	-

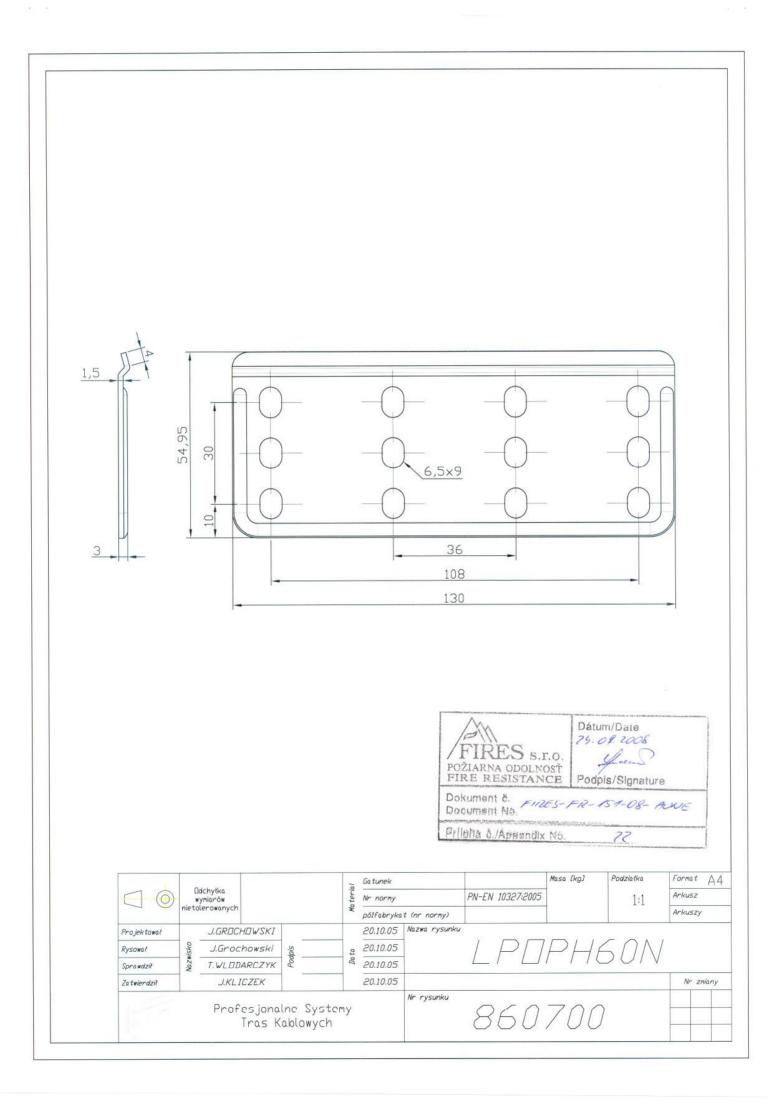

Zestawienie kabli

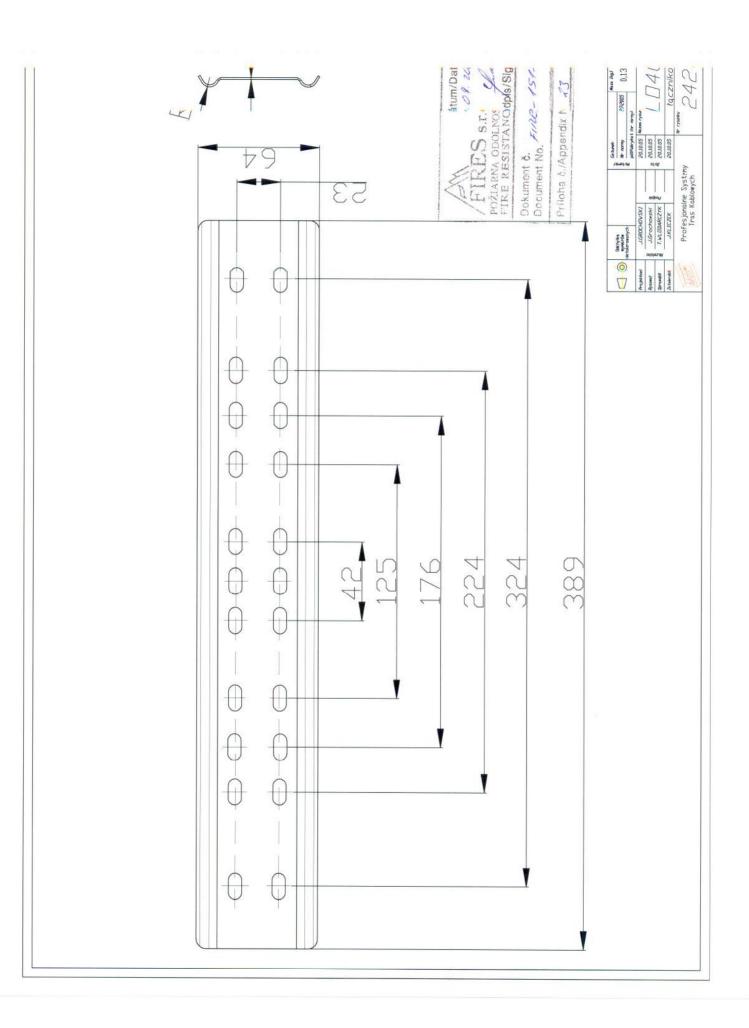
Lp	Symbol kaba	Średnica kabla	Ciężar kabla	Ilość
1	NHXCH FE 180 E90 4x 16/16	26,0±0,5	1,34 kg/m	
2	NHXH FE 180 E90 4x 16	24,0	1,14 kg/m	
3	NHXCH FE 180 E90 4x 1,5/1,5	17mm	0,39 kg/m	
4	NHXH FE 180 E90 4x 1,5	16mm	0,35 kg/m	
5	NHXCH FE 180 E30 4x 16/16	25	1,28 kg/m	
6	NHXH FE 180 E30 4x 16	23	1,10 kg/m	
7	NHXCH FE 180 E30 4x 1,5/1,5	16	0,35 kg/m	
8	NHXH FE 180 E30 4x 1,5	15	0,31 kg/m	
9	HTKSH 1x2x1	8 mm	0.07 kg/m	
10	HTKSH ekw1x2x1	8 mm	0.07 kg/m	
11	JE-H(St)H 1x2x 0.8	8 mm	0.07 kg/m	

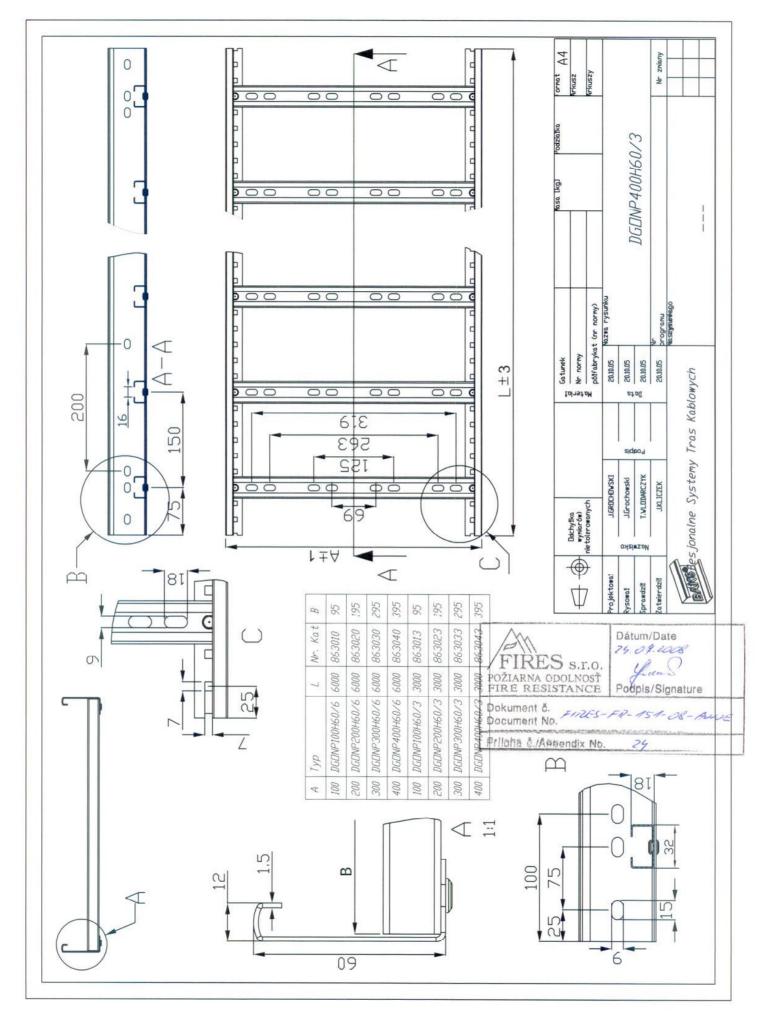
Zestawienie puszek

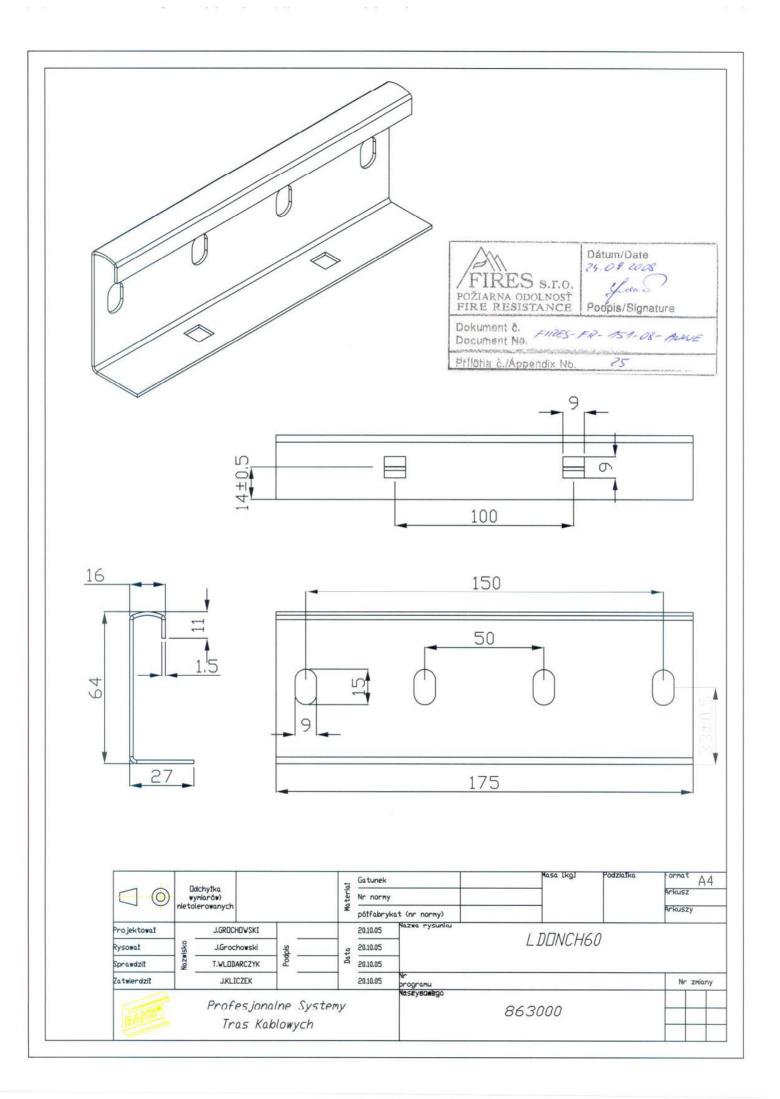

Lp	Symbol kaba	ilość		Dátum/Date
1	WKE 2	21	11/2	24.09 2008
2	WKE 3	1	/FIRES s	s.r.o.
3	WKE 4	20	POŽIARNA ODOL FIRE RESISTA	
			Dokument č. Document No. Fr Prijsha 6./AaReni	12ES-FR-151-08-DUNE 11× NA. 16

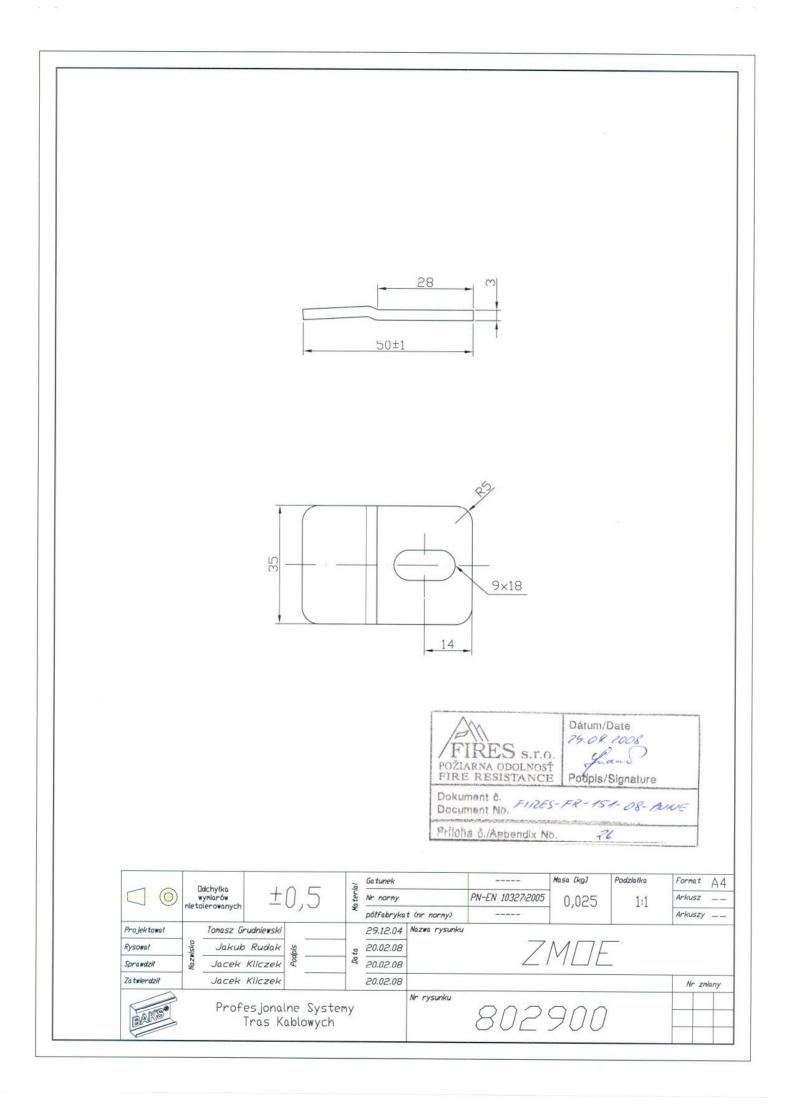


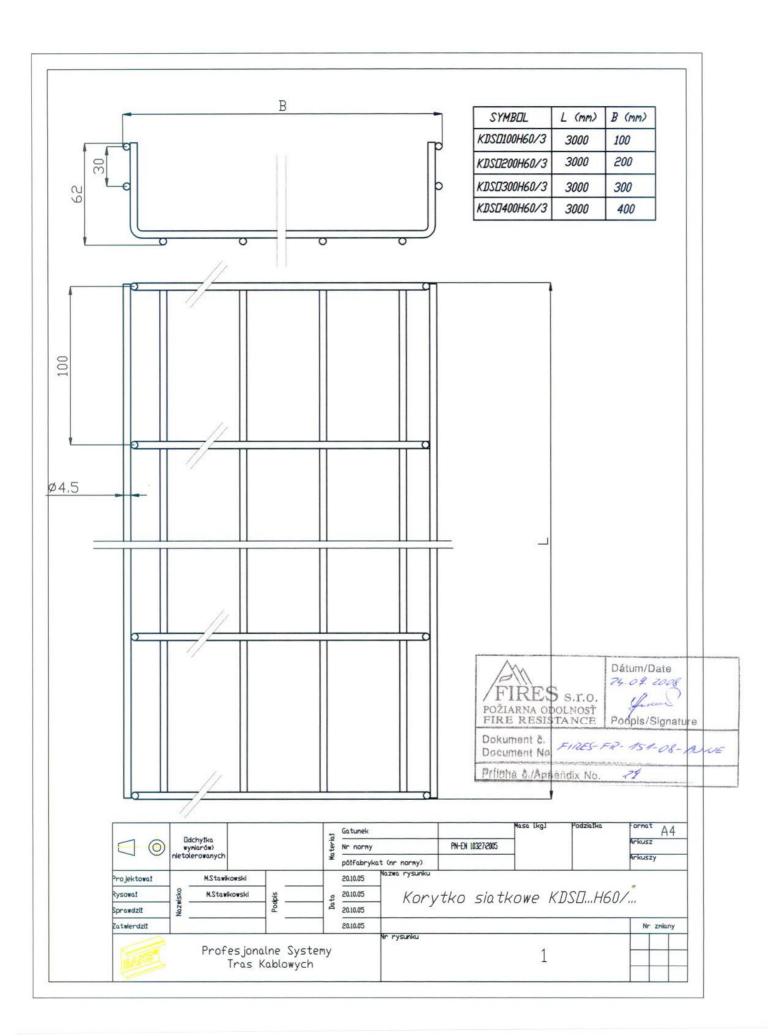


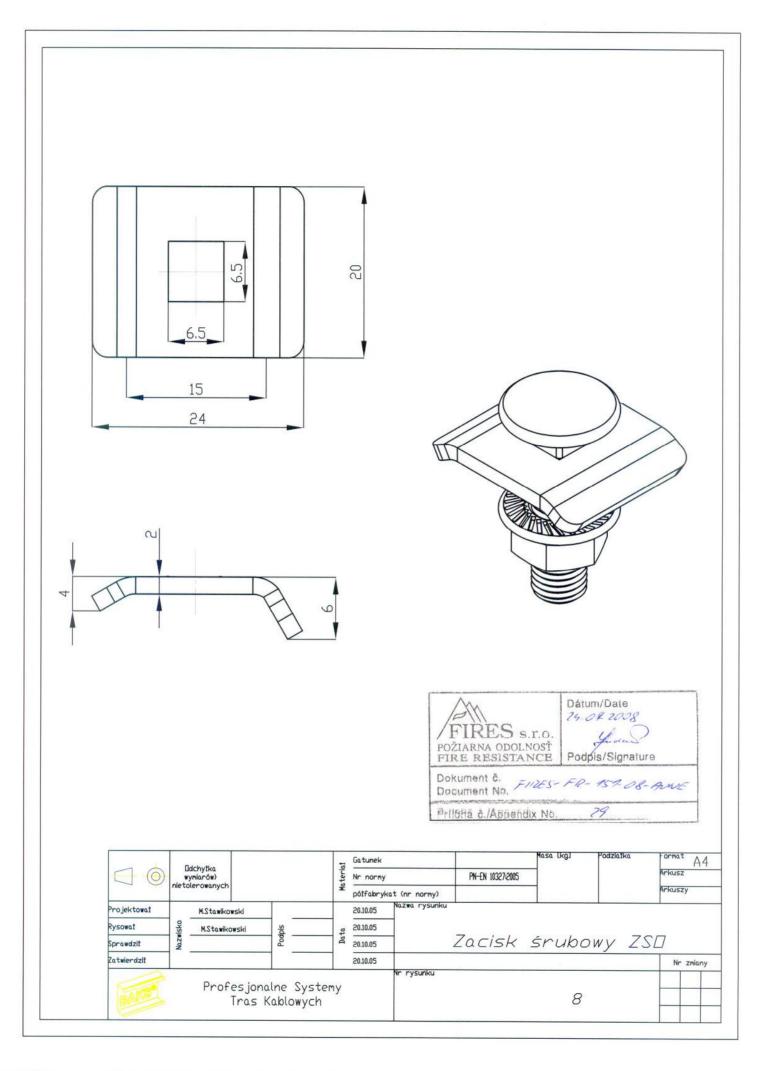

F











.

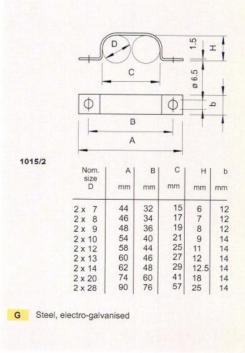
FIRES s.r.o. POŽIARNA ODOLNOSŤ FIRE RESISTANCE Dokument č. Dokument č. Podpis/Signature Document No. Príloha č./Appendix No. 28
Indechytika wyniarów) nietolerowanych Indechytika wyniarów nietolerowanych I

.

Fixing clips

FIRES S.F.O. POŽIARNA ODOLNOSŤ FIRE RESISTANCE	Dátum/Date 24.04.2008 Judas Podpis/Signature
Dokument č. Document No. F112ES-	FR-151-08-AUNE
Príloha č./Appendix No.	30

1015

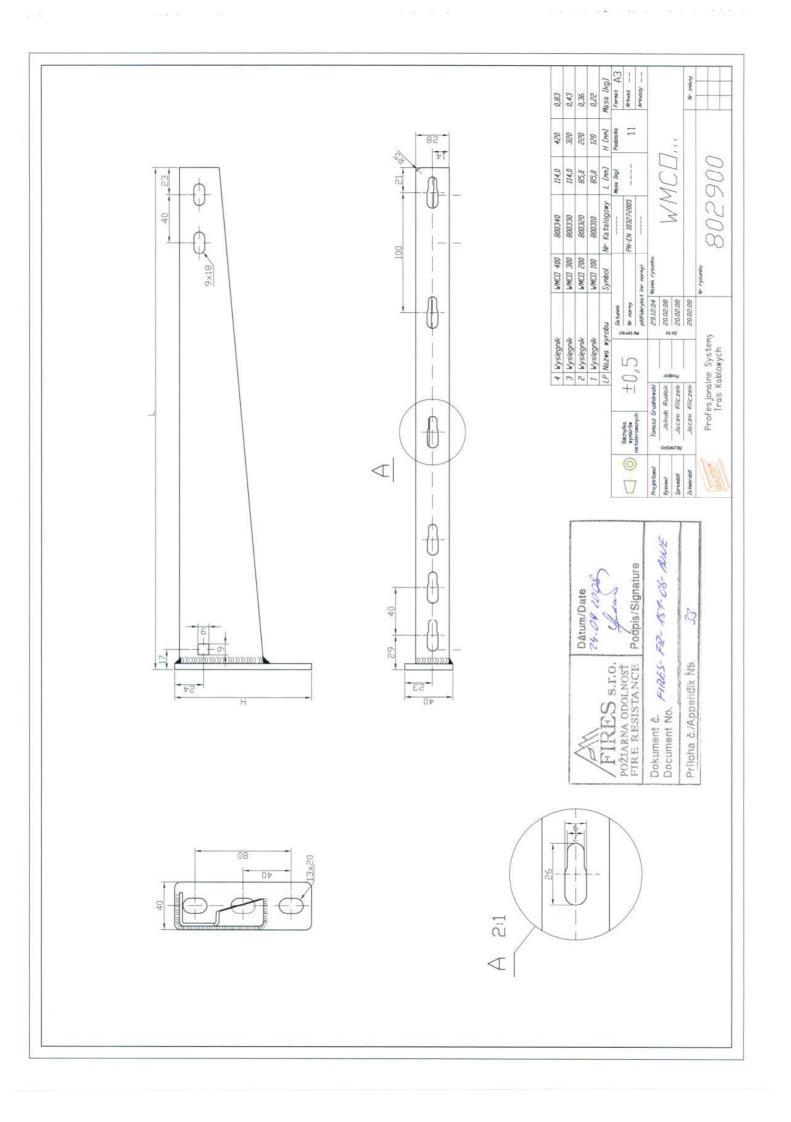

1	1	-		
	1	1.5	+	I
~		L	ø 6.5	
			96	1
\subset	>	$\Phi =$	_	٩

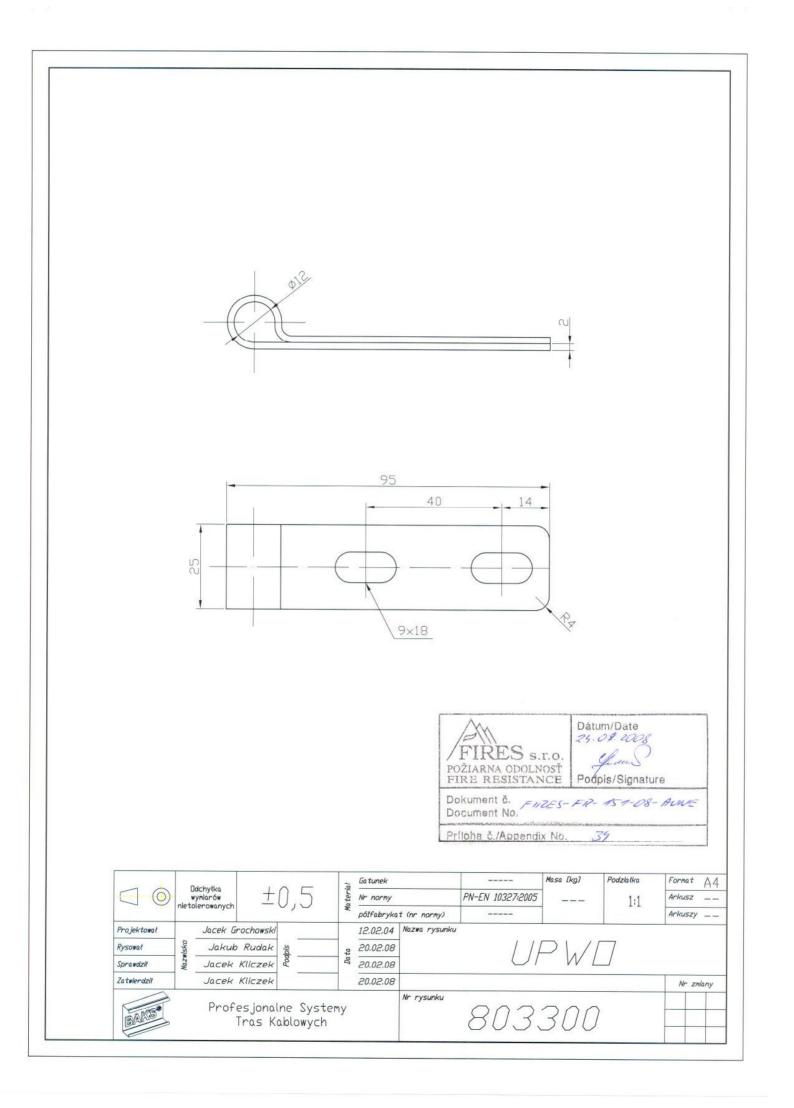
A

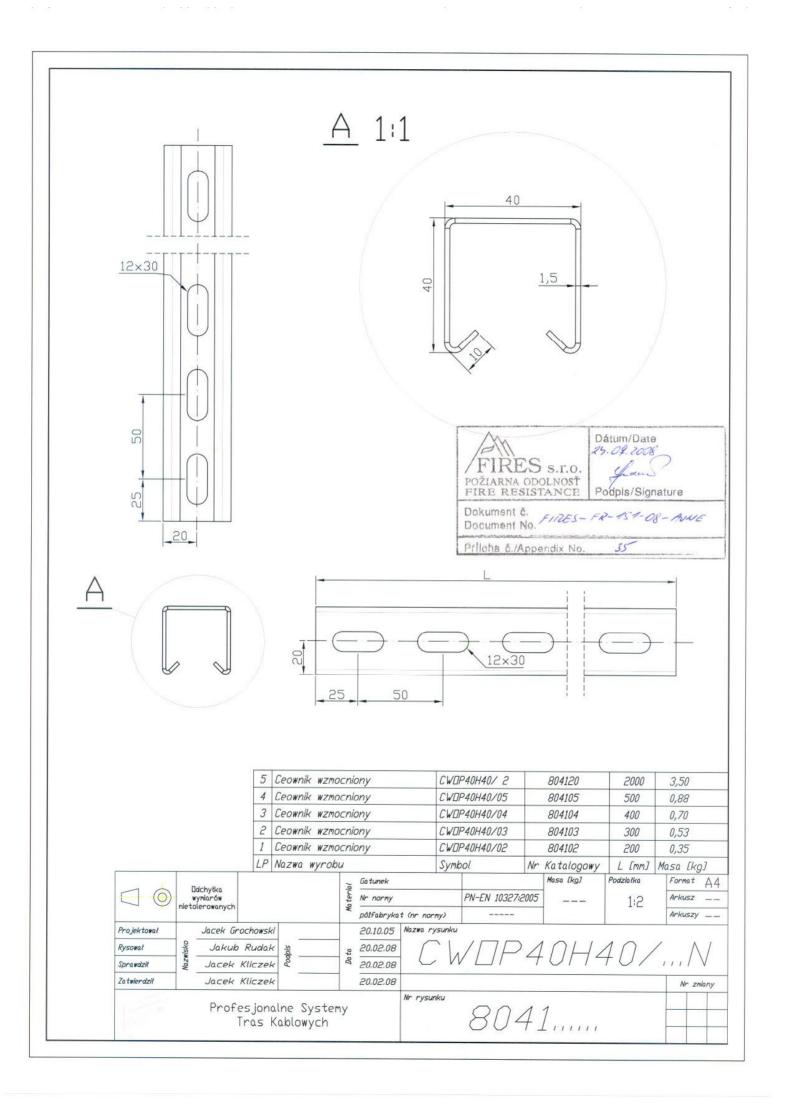
Туре	For Ø mm D	Carton qty	Pack qty	Weight kg/100	Ord. no. G
1015	5	2000	100	0.325	1009028
1015	6	2000	100	0.385	1009036
1015	7	2000	100	0.418	1009044
1015	8	2000	100	0.428	1009052
1015	9	2000	100	0.468	1009060
1015	10	2000	100	0.560	1009079
1015	11	2000	100	0.632	1009087
1015	12	2000	100	0.672	1009109
1015	13	2000	100	0.683	1009117
1015	14	1000	100	0.710	1009168
1015	15	1200	100	0.744	1009184
1015	16	1000	100	0.753	1009192
1015	17	1000	100	0.764	1009206
1015	18	1000	100	0.835	1009214
1015	19	1000	100	0.878	1009222
1015	20	1000	100	0.921	1009230
1015	21	1000	100	0.951	1009249
1015	22	1000	100	1.025	1009257
1015	23	1000	100	1.097	1009338
1015	24	1000	100	1.111	1009346
1015	25	1000	100	1.150	1009427
1015	26	1000	100	1.189	1009354
1015	28	1000	100	1.250	1009362

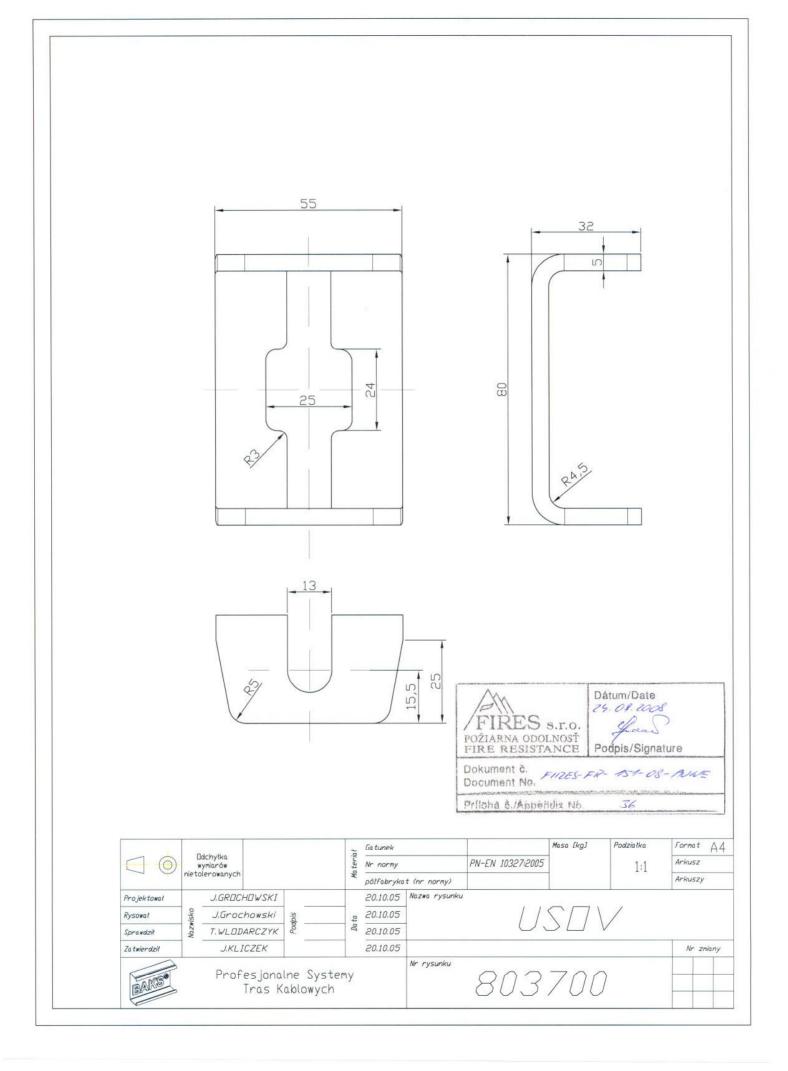
Nom. size D	L mm	H mm	b mm	A mm
5	16	4	12	7
6	16	5	12	77
7	16	6	12	7
8	16	7	12	7
9	16	8	12	7
10	16	9	12	7 7 7 7
11	16	10	14	7
12	16	11	14	7
13	16	12	14	7
14	16	12.5	14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
15	16	13.5	14	7
16	16	14	14	7
17	16	15	14	7
18	16	16	14	7
19	16	17	14	7
20	16	18	14	7
21 22	16	19	14	7
22	16	20	14	7
23	16	21	14	7
24	16	22	14	7
25	16	22.5	14	7
26	16	23	14	7 7 7
28	16	25	14	7

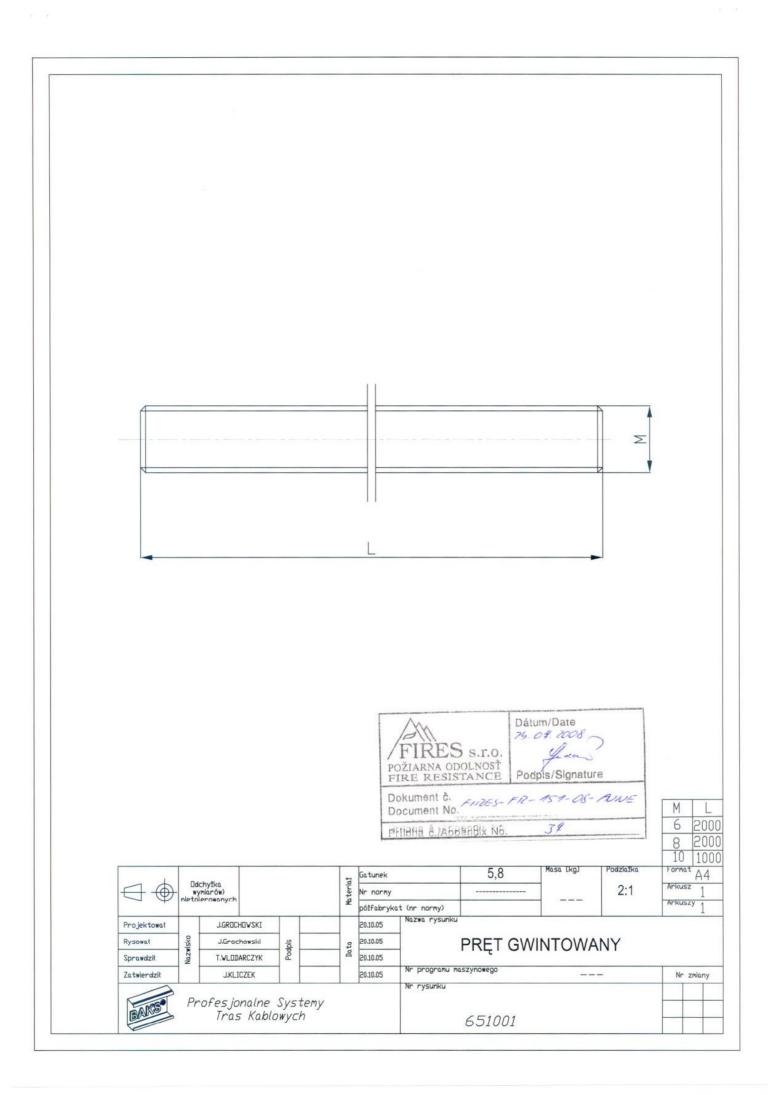
G Steel, electro-galvanised

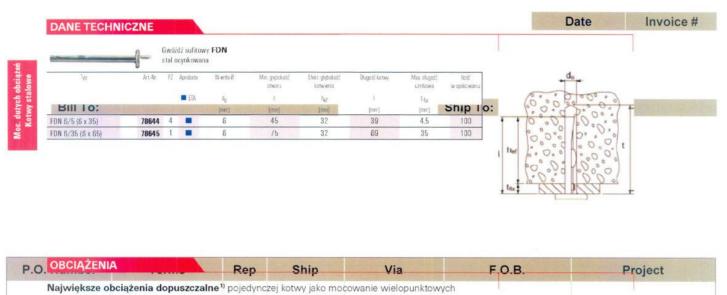



	Туре	For 2xØ mm D	Carton qty	Pack qty	Weight kg/100	Ord. no. G	
	1015/2	7	2000	100	0.630	1011006	
1	1015/2	8	2000	100	0.720	1011014	
1	1015/2	9	1000	100	0.833	1011022	
	1015/2	10	1000	100	0.853	1011030	
	1015/2	12	1000	100	1.108	1011057	
	1015/2	13	1000	100	1.159	1011065	
	1015/2	14	1000	100	1.223	1011073	
	1015/2	20	1000	100	1.547	1011154	
	1015/2	28	500	50	2.020	1011189	


VBS_GB_V0_15022001

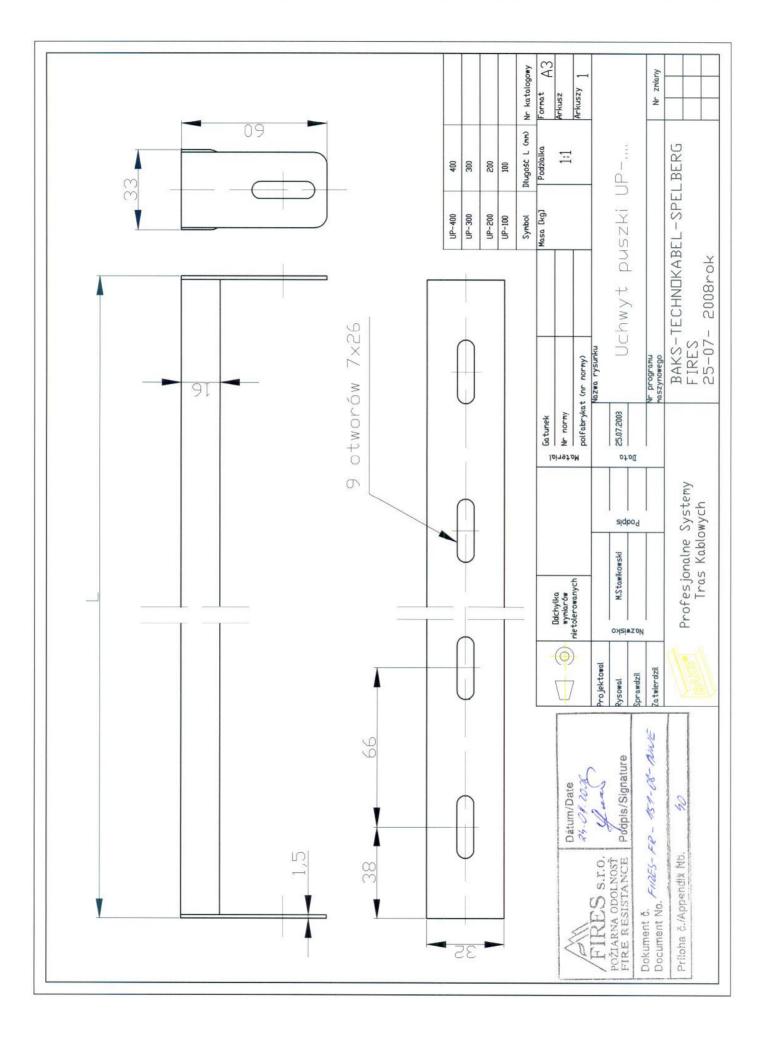

					POŽIARNA ODO FIRE RESISTA	S.T.O. LNOSŤ ANCE	Podpis/S	2008 Local lignature	KLE
		8655							
		20 Uchwyt i 19 Uchwyt i		UDF 43 UDF 40	405543 405540	21,5 20,0	60,0 57,0	20,0 20,0	2,0
		18 Uchwyt / 17 Uchwyt / 16 Uchwyt /	kabla	UDF 37 UDF 34 UDF 31	405537 405534 405531	18,5 17,0 15,5	54,0 51,0 48,0	20,0 20,0 20,0	2,0 2,0 2,0
		15 Uchwyt H 14 Uchwyt H	kabla	UDF 28 UDF 25	405528	14,0 12,5	40,0 45,0 44,0	20,0 20,0 20,0	2,0 2,0 2,0
		13 Uchwyt H 12 Uchwyt H	kabla	UDF 22 UDF 20	405522 405520	11,0 10,0	41,0 39,0	14,0 14,0	2,0 2,0 2,0
		11 Uchwyt H 10 Uchwyt H	kabla	UDF 18 UDF 16	405518 405516	9,0 8,0	37,0	14,0	2,0
		9 Uchwyt F	22.01.0	UDF 15	405515	7,5	35,0 34,0	14,0 14,0	2,0 2,0
		8 Uchwyt A	kabla	UDF 14	405514	7,0	33,0	14,0	1,2
		7 Uchwyt A		UDF 12	405512	6,0	30,0	14,0	1,2
	-	6 Uchwyt A		UDF 10	405510	5,0	28,0	14,0	1,2
	-	5 Uchwyt A 4 Uchwyt A	and the second se	UDF 9 UDF 8	405509	4,5	27,0	14,0	1,2
	-	3 Uchwyt A	and the second se	UDF 7	405508 405507	4,0 3,5	26,0 25,0	14,0 14,0	1,2 1,2
	-	2 Uchwyt A		UDF 6	405506	3,0	24,0	14,0	1,2
		1 Uchwyt A		UDF 5	405505	2,5	23,0	14,0	1,2
		LP Nazwa wy	robu	Symbol	Nr Katalogowy	R [mm]	L [mm]	H [mm]	G [mi
Dd wy nietole	chytka mlarów <u>+</u> erowanych	0,5	Nr normy półfabrykat	(nr normy)	PN-EN 10327:2005	Masa [kg] ———	Podziałk 1:	1 Ark	
Projektował Rysował Sprawdził	Jacek Grochowski Jakub Rudak Jacek Kliczek	Podpls	20.10.05 20.02.08 20.02.08	Nazwa rysunku	UDF	5	-4	3	
Zatwierdził	Jacek Kliczek Profesjona	lne System	20.02.08	Nr rysunku	1000			A	ir zmiany
BAIL		ablowych			4055),,,,,	1		

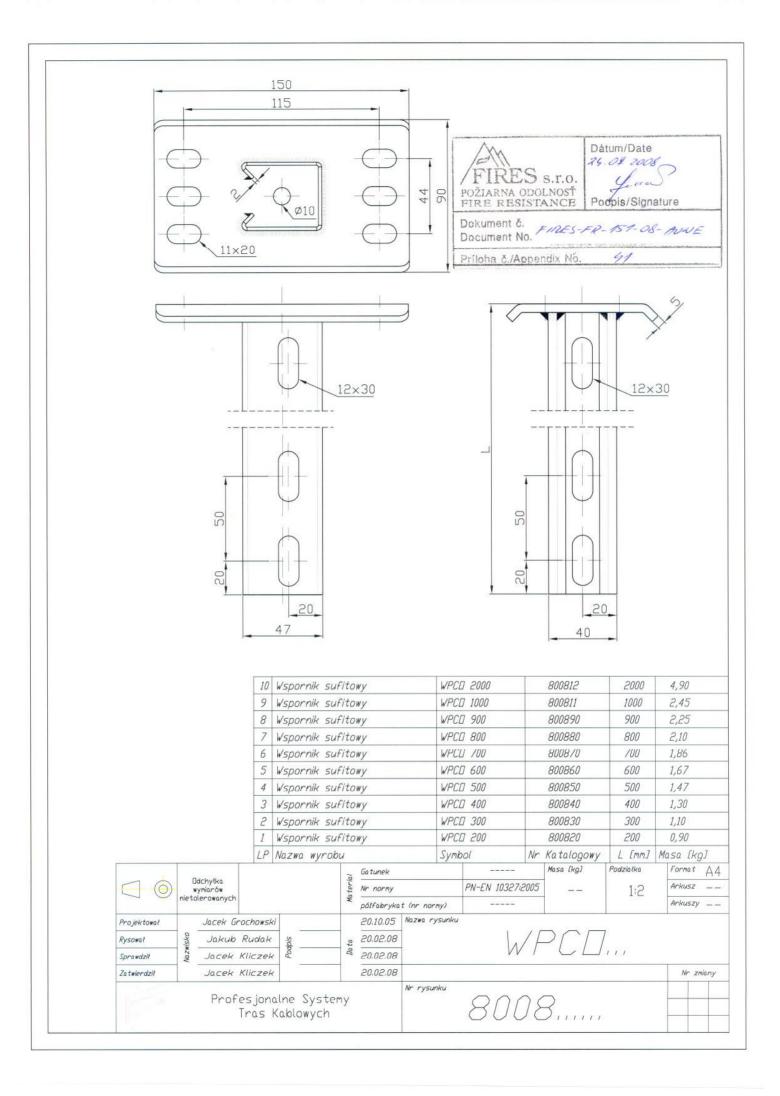

			1							
	1		C.							
			C .U							
			4							
	A±	0.5								
	C		4							
						B				
						14		5	R2.5	
					40	14	12			
				UEF 7		14				
					44]4				
						14		9	R4.5	
					52	14	12	12	R6	RÊ
	A .	D.64 pm / Data		UEF14			2		R7	
	AM	Dátum/Date 24. 04. 2008								R4
	FIRES S.T.O.	face			62					
	OŽIARNA ODOLNOSŤ TRE RESISTANCE	Podpis/Signatu	Cardon material course and an and	UEF18			2	19	R9	RA
	acument No.	FR-151-08-	NUNE		70				RIÙ	
6405	filoha č./Appendix No.	same and a state of the second se			74		2	23	RH	
					30		2			
	Gachylka					Moso D	đĩ	Podziałka	Farmat	A4
	wymioriów) nietolerowsnych	te n			10[42 + A] + 199				Ankusz Ankusz	
Projektowaj	JOPOCHEWSK1	- póifa - 20.100	arykat unr normy) 4 Nazwa rysuni						P1 4052	
	R JGROCHOWSKI 4	29,100								
Pysowoi	T WLODARCZYK	2910) E								
sprawazii			INC DODDODD	maszynowea						
Sprowdzii			Al Nr nysonku						Nr	


MOCOWANIE DUŻYCH OBCIĄŻEŃ/KOTWY STALOWE

123

Invoice Gwóźdź sufitowy FDN Montaż poprzez uderzenie. Date Invoice # INFORMACJE OGÓLNE Gwóźdź Zastosowanie: sufitowy FDN jako mocowanie wielostal ocynkowana punktowych systemów nienośnych w betonie Kotwy stald zarysowanym C20/25 loc duzych Bill To: do C50/60 klasse F 120 Także do: Beton B15 Do mocowania: Kamień naturalny Listew drewnianych Metalowych profili o zbitej strukturze Cegła pełna Odciągów linowych Bloki pełne Łańcuchów wapienno-piaskowe Taśm perforowanych Płyt kanałowych Systemów wentylacyjnych ze sprężonego betonu Drewnianych i meta-P.O. Number Terms Rep Ship :t lowych podkonstrukcji Sufitów Quantity Item Code Description **Price Each** Amount **OPIS PRODUKTU** Kotwa wbijana do montażu przelotowego podciagów sufitowych. Przez przemieszczenie klina rozprężającego gwóźdź sufitowy rozpiera ją w otworze. Zalety/Korzyści Rozpieranie się gwoździa bezpośrednio w trakcie montażu powoduje tylko minimalne wysunięcia pod wpływem Dátum/Date obciażenia. 25-04.2008 Nie są wymagane specjalistyczne narzędzia. FIRES s.r.o. 1Ann Prosta, wzrokowa kontrola montażu: gwóźdź rozprężny jest POŽIARNA ODOLNOSŤ FIRE RESISTANCE prawidłowo wbity, jeśli ściśle przylega do podłoża. Poopis/Signature Dokumant ö. FIRES-FR-151-08-AUNE Document No. Filleha A ARbandix No MONTAŻ 38 Rodzaj montażu Preferowany montaż przelotowy Instrukcje montażowe Podczas wsuwania gwoździa sufitowego do otworu nie uderzać w klin rozprężający. Mocować tylko twarde przedmioty. Total STANDARDY BEZP POŻAROWE Informacje dotyczące Inf. na temat wymagań prawnych dotyczacych mocowań znaiduja się ochrony przeciwpożarowej na str. 26 pod hasłem APROBATY znajdują się na str. 23.


124


Invoice

uantity Item Code	Descri	FDN 6	Price Eac	h Amoun
Typ kotwy		galw. ocynk.	The search of the second se	COLOR DE COL
Efektywna głębokość zakotwienia	h _{ef} [mm]	32	Sold State Street Street	
Dopuszczalne obciążenie F _{zul} ¹⁾ pojedynczego gwoździa bez wpł	ywu warunków brzegowych, tzn. c≥c _{cr} is≥	\$cr		
Beton C20/25 do C50/60	[kN]	0,9		
Dopuszczalny moment zginający M _{zul}				
	[Nm]	3,1		
Wymiary elementów budowlanych i parametry montażowe				
Charakterystyczny odstęp osiowy	s _{cr} [mm]	200		
Charakterystyczna odległość od krawędzi	c _{cr} [mm]	150		
Minimalny odstęp osiowy	s _{min} [mm]	130		
Minimalna odległość od krawędzi	¢ _{min} [mm]	100		
Minimalna grubość podłoża	h _{min} [mm]	80		
Nominalna średnica wiercenia	dŋ [mm]	6	The second second second	
Głąbokość otworu	hŋ ≥ [mm]	40		
Srednica otworu w elemencie mocowanym	d _f ≤ [mm]	1		
bezpieczeństwa i częściowy współczynnik bezpieczeństwa y	= 1,4, Par7 strona zu Luocazenia			
овернесены ма т серсному маротскупник овернесены ма ур	= 1,4, Partz Sirona zu Luocazenia			
uezpieczenistwa i czysowy wsporczynink oezpieczenistwa zg	- 1,4, Partz sirona zu _uoosązenia		17	um/Date
nachierseinen wat estasten A.A.	- 1,4, Partz sirona zu _uoosązenia	A	11 24	um/Date - 04. 2008
osztniszensi wa i częsciowy wsporczynink osztnistwa zy	- 1,4, Partz Sirona zu Luocagzenia	FI	RES s.r.o. 24	
nachinarsana i safarana A maharsahinin machinarsana Ab	- 1,4, Partz Sirona zu Luocagzenia	FI	RES s.r.o.	04. 2008 Juan
nachinersener in a raskeron A Mahuroshinin Dechnersene (Ma A	- 1,4, Part7 Sirona 20 _000ag/enia	POŽIA	RES s.r.o.	
nachinersenza na i cráznom A melhorcskom proschnerskene (ma A	- 1,4, Part7 Sirona 20 _000ag/ellia	POŽIA FIRE Dokum	RES S.T.O. RNA ODOLNOST RESISTANCE Pod ent č. FILZES-FR-	04. 2008 Joins pis/Signature - 157-05-Aut
nachinersenza na i cráznomá Androckánnik Oschnersenza Ad	- 1,4, Part/ Sirona / U _Uoolag/ellia	POŽIA FIRE Dokum Docum	RES S.r.O. RNA ODOLNOSŤ RESISTANCE Pod ent č. FIIZES-FR- ent No.	04. 2008 Joins pis/Signature - 15-1-05-Aut
	- 1,4, Part/ Strona 2.0 _000ag/ema	POŽIA FIRE Dokum Docum	RES S.T.O. RNA ODOLNOST RESISTANCE Pod ent č. FILZES-FR-	04. 2008 Joins pis/Signature - 157-08-Aut
nastinessense a i stational A Malousskining pastinessene ma A	- 1,4, Part/ Strona 20 _0008(2018	POŽIA FIRE Dokum Docum	RES S.r.O. RNA ODOLNOSŤ RESISTANCE Pod ent č. FIIZES-FR- ent No.	04. 2008 Junes pis/Signature - 157-05-Aux



NHXH FE180 PH30/E30 0,6/1 kV

ISO 9001:2000

FIRE RESISTANT HALOGEN FREE POWER CABLES

APPLICATIONS

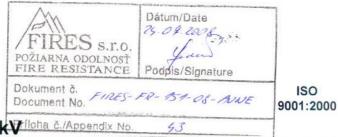
NHXH FE180 PH30/E30 0,6/1 kV fire resistant power cables, insulated and sheathed with halogen free compounds, are intended for power supply to fire protection equipment which is to operate in fire conditions (e.g. water pumps in fire extinguishing systems, smoke removing fans).

Halogen free cables shall be applied in locations where, in case of fire, higher safety for human beings and expensive electronic equipment is required.

Functions of the cables are maintained – power is supplied to equipment which must operate in fire conditions and during fire fighting. The cables are flame retardant and their smoke emission is low, emitted fumes are non toxic and non corrosive.

The cables are certified by Scientific and Research Development Centre for Fire Protection (Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej) at Józefów – Certificate of Conformity No. 2412/2007.

The cables are suitable for indoor and outdoor installations.


CONSTRUCTION

conductor	-	bare copper, solid or stranded, according to PN-EN 60228, EN 60228
insulation	-	mica tape and halogen free cross-linked compound insulation - colours in accordance with PN-HD 308,
filler	-	filler made of halogen free compound,
inner sheath	-	inner sheath made of halogen free compound,
sheath	-	orange, cable sheath made of halogen free compound according to HD 604 S1 and VDE 0276-604 –HM4, (oxygen index bigger than 35%).

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87 www.technokabel.com.pl export@technokabel.com.pl

K199A02B

The cables maintain their functions for 30 minutes, meeting requirements of DIN 4102-12 and PN-EN 50200 standards

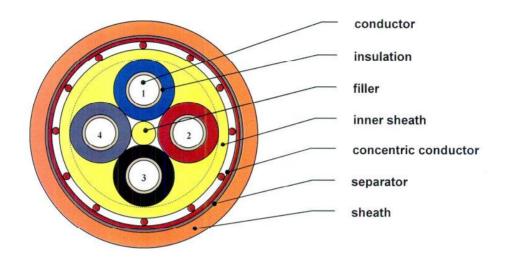
	Cond	luctor cross-section				
Number of conduct	ors	Nominal conductor cross-section				
no		mm ²				
1		16 ÷ 400				
2 - 5		1	+ 240			
7 – 19		1; 1.5; 2.5 i 4				
24 - 40		1;	1.5; 2.5			
Operating voltage Voltage test Insulation resistivity at 90°C, minimum Inductance, approximate Corrosivity of emitted gases per PN-EN 50267-2-3, IEC 60754-2	0.6/1 kV 4.0 kV rms 1 x 10 ¹¹ Ω⋅cm 0.7 mH/km	Operating temperature range during operation during installation Minimum bending radius Cable combustibility Circuit integrity [*] E30	from -15 to +90°C from -5 to +70°C 12 x cable diameter flame retardant DIN 4102-12			
pH, approximate conductivity, approximate Smoke density per PN-EN 50268-2-3, IEC 61034-2 light transmittance, minimum	6.8 0.4 µS/mm 94%	PH30 Insulation integrity FE180 Combustibility tests Reference standards	PN-EN 50200 or PN-EN 50362 IEC 60331-21; IEC 60331-11 PN-EN 50266-2-4, IEC 60332-3-24 PN-EN 50200 and PN-EN 50362 AT-0603-0064/2006, WT-TK-44			
		*	DIN VDE 0266 PN-HD 604 S1			

*Circuit integrity is dependent on installation method.

C€ = the cable meets requirements of the low voltage directive 2006/95/WE

Article No.	Number of conductors x conductor cross-section	Cable outer diameter (appr.)	Copper index	Cable weight (appr.)	Article No.	Number of conductors x conductor cross-section	Cable outer diameter (appr.)	Copper index	Cable weigh (appr.)
	mm ²	mm	kg/km	kg/km		mm ²	mm	kg/km	kg/km
Car Shares	1 x 6,0 RE	8,3	58,0	120		3 x 16 RM	20,9	461,0	885
	1 x 10 RE	9,3	96,0	160		3 x 25 RM	24,6	720,0	1270
	1 x 16 RE	10,3	154,0	240		4 x 1,5 RE	14,7	58,0	315
	1 x 25 RM	12,3	240,0	340	and the second second	4 x 2,5 RE	15,7	96,0	380
	1 x 35 RM	13,4	336,0	450		4 x 4,0 RE	16,9	154,0	475
	1 x 50 RM	14,1	480,0	570		4 x 6,0 RE	18,1	230,0	585
	1 x 70 RM	15,9	672,0	775		4 x 10 RE	20,1	384,0	805
	1 x 95 RM	17,7	912,0	1030		4 x 16 RM	22,7	614,0	1095
	1 x 120 RM	19,3	1152,0	1260		4 x 25 RM	26,8	960,0	1550
	2 x 1,5 RE	13,2	28,8	245		4 x 35 RM	30,7	1920,0	1550
	2 x 2,5 RE	14,0	48,0	285		4 x 50 RM	31,7	1920,0	2590
	2 x 4,0 RE	14,9	77,0	345	Constant States	5 x 1,5 RE	15,8	72,0	365
	2 x 6,0 RE	15,9	115,0	415		5 x 2,5 RE	16,9	120,0	445
	2 x 10 RE	17,6	192,0	550	and the second se	5 x 4,0 RE	18,2	192,0	560
	2 x 16 RE	19,6	307,0	745		5 x 6,0 RE	19,5	288,0	695
	2 x 25 RM	23,2	480,0	1030	Contraction of the second	5 x 10 RE	21,8	480,0	965
	3 x 1,5 RE	13,7	43,2	270		5 x 16 RM	24,8	768,0	1320
	3 x 2,5 RE	14,6	72,0	325		5 x 25 RM	28,5	1200,0	1880
	3 x 4,0 RE	15,6	115,0	400		5 x 35 RM	31,8	1680,0	2480
	3 x 6,0 RE	16,7	173,0	490		5 x 50 RM	35,0	2400,0	3180
	3 x 10 RE	18,5	288,0	670		7 x 1,5 RE	16,9	101,0	425

RE - single wire round conductor; RM - multiwire round conductor


Other cross-sections and conductor counts available on request.

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87 www.technokabel.com.pl export@technokabel.com.pl

K199A02B

FIRE RESISTANT HALOGEN FREE POWER CABLES

APPLICATIONS

NHXCH FE180 PH30/E30 0,6/1 kV fire resistant power cables, insulated and sheathed with halogen free compounds, are intended for power supply to fire protection equipment which is to operate in fire conditions (e.g. water pumps in fire extinguishing systems, smoke removing fans).

Halogen free cables shall be applied in locations where, in case of fire, higher safety for human beings and expensive electronic equipment is required.

Functions of the cables are maintained – power is supplied to equipment which must operate in fire conditions and during fire fighting. The cables are flame retardant and their smoke emission is low, emitted fumes are non toxic and non corrosive.

The cables are certified by Scientific and Research Development Centre for Fire Protection (Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej) at Józefów – Certificate of Conformity No. 2412/2007.

The cables are suitable for indoor and outdoor installations.

CONSTRUCTION

conductor	-	bare copper, solid or stranded, according to PN-EN 60228, EN 60228,
insulation	-	mica tape and halogen free cross-linked compound insulation - colours in accordance with PN-HD 308,
filler		filler made of halogen free compound,
inner sheath	-	inner sheath made of halogen free compound,
concentric conductor	-	concentric conductor made of bare copper wires and a copper tape binder wrapped over the inner sheath,
separator	_	polyester tape,
sheath	-	orange, cable sheath made of halogen free compound according to HD 604 S1 and VDE 0276-604 – HM4, (oxygen index bigger than 35%).

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87 www.technokabel.com.pl export@technokabel.com.pl K200A02B

The cables maintain their functions for 30 minutes, meeting requirements of DIN 4102-12 and PN-EN 50200 standards

	Conc	luctor cross-section				
Number of conduct	ors	Nominal conductor cross-section				
no	advision and a second		mm ²			
1		1	6 ÷ 400			
2 - 5			1 ÷ 240			
7 – 19		1; 1.5; 2.5 i 4				
24 - 40		1; 1.5; 2.5				
Dperating voltage /oltage test nsulation resistivity at 90°C, ninimum nductance, approximate Corrosivity of emitted gases per PN-EN 50267-2-3, IEC 60754-2 pH, approximate	0.6/1 kV 4.0 kV rms 1 x 10 ¹¹ Ω·cm 0.7 mH/km 6.8	Operating temperature rang during operation during installation Minimum bending radius Cable combustibility Circuit integrity E30 PH30	e from -15 to +90°C from -5 to +70°C 12 x cable diameter flame retardant DIN 4102-12 PN-EN 50200 or PN-EN 50362			
conductivity, approximate Smoke density per PN-EN 50268-2-3, IEC 61034-2 light transmittance, minimum	0.4 µS/mm 94%	Insulation integrity FE180 Combustibility tests Reference standards	IEC 60331-21; IEC 60331-11 PN-EN 50266-2-4, IEC 60332-3-24 PN-EN 50200 and PN-EN 50362 AT-0603-0064/2006, WT-TK-44 DIN VDE 0266			

* PN-HD 604 S1 Circuit integrity is dependent on installation method.

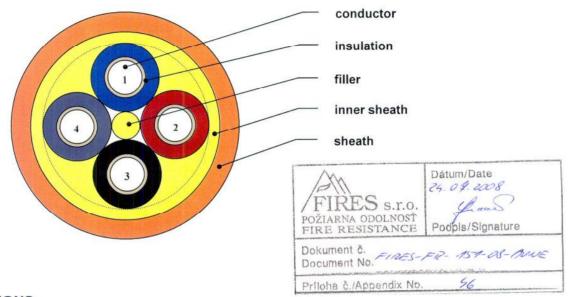
C€ = the cable meets requirements of the low voltage directive 2006/95/WE

Article No.	Number of conductors x conductor cross-section	Cable outer diameter (appr.)	Copper index	Cable weight (appr.)	Article No.	Number of conductors x conductor cross-section	Cable outer diameter (appr.)	Copper index	Cable weight (appr.)
	mm ²	mm	kg/km	kg/km		mm ²	mm	kg/km	kg/km
	3 x 1,5RE/1,5	15,4	43,2	320		4 x 6,0 RE/6,0	21,1	230	690
	3 x 2,5 RE/2,5	16,5	72	390		4 x 10 RE/10	25,8	384	1020
SI SECTO	3 x 4,0 RE/4,0	17,6	115	460	Sector State	4 x 16 RE/16	25,2	614	1280
	3 x 6,0 RE/6,0	19,6	173	590		4 x 25 RM/16	31,5	960	1890
The second second	3 x 10 RE/10	22,6	288	840	and the second	4 x 35 RE/16	32,3	1498	2350
	3 x 16 RE/16	25,8	461	1190		4 x 50 RM/25	34,4	2160	2870
Man and	3 x 25 RM/16	29,1	720	1570	and the second	States States in the	ARE AND AND		
	3 x 35 RM/16	32,7	1190	1960		7 x 1,5RE/2,5	19,5	101	520
A CARLES	3 x 50 RM/25	35,7	1723	2560	The second second second	7 x 2,5 RE/2,5	20,7	168	620
	4 x 1,5RE/1,5	15,8	72	350					
A CARLEN COMPANY	4 x 2,5 RE/2,5	17,8	96	450		12 x 1,5RE/2,5	24.6	101	830
	4 x 4,0 RE/4,0	18,9	154	530		12 x 2.5 RE/4.0	26,7	168	1030

RE - single wire round conductor; RM - multiwire round conductor

Other cross-sections and conductor counts available on request.

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87 www.technokabel.com.pl export@technokabel.com.pl


K200A02B

TECHNOKABEL

ISO 9001:2000

NHXH FE180 PH90/E90 0,6/1 kV

FIRE RESISTANT HALOGEN FREE POWER CABLES

APPLICATIONS

NHXH FE180 PH90/E90 0,6/1 kV fire resistant power cables, insulated and sheathed with halogen free compounds, are intended for power supply to fire protection equipment which is to operate in fire conditions (e.g. water pumps in fire extinguishing systems, smoke removing fans).

Halogen free cables shall be applied in locations where, in case of fire, higher safety for human beings and expensive electronic equipment is required.

Functions of the cables are maintained - power is supplied to equipment which must operate in fire conditions and during fire fighting. The cables are flame retardant and their smoke emission is low, emitted fumes are non toxic and non corrosive.

The cables are certified by Scientific and Research Development Centre for Fire Protection (Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej) at Józefów - Certificate of Conformity No. 2412/2007.

The cables are suitable for indoor and outdoor installations.

dance
and

K074A02B

The cables maintain their functions for 90 minutes, meeting requirements of DIN 4102-12 and PN-EN 50200 standards

	Cond	luctor cross-section				
Number of conduct	ors	Nominal conductor cross-section				
no			mm ²			
1		16	5 ÷ 400			
2 - 5		1	+ 240			
7 – 19		1; 1.	5; 2.5 i 4			
24 - 40		1; 1.5; 2.5				
Operating voltage	0.6/1 kV	Operating temperature range	9			
Voltage test	4.0 kV rms	during operation during installation	from -15 to +90°C from -5 to +70°C			
Insulation resistivity at 90°C, minimum	1 x 10 ¹¹ Ω·cm	Minimum bending radius	12 x cable diameter			
Inductance, approximate	0.7 mH/km	Cable combustibility	flame retardant			
Corrosivity of emitted gases per		Circuit integrity *				
PN-EN 50267-2-3, IEC 60754-2 pH, approximate	6.8	E90 PH90	DIN 4102-12 PN-EN 50200 or PN-EN 50362			
conductivity, approximate	0.4 µS/mm	Insulation integrity FE180	IEC 60331-21; IEC 60331-11			
Smoke density per PN-EN 50268-2-3, IEC 61034-2 light transmittance, minimum	94%	Combustibility tests	PN-EN 50266-2-4, IEC 60332-3-24 PN-EN 50200 and PN-EN 50362			
ight deformation, minimum	0170	Reference standards	AT-0603-0064/2006, WT-TK-44 DIN VDE 0266 PN-HD 604 S1			

*Circuit integrity is dependent on installation method.

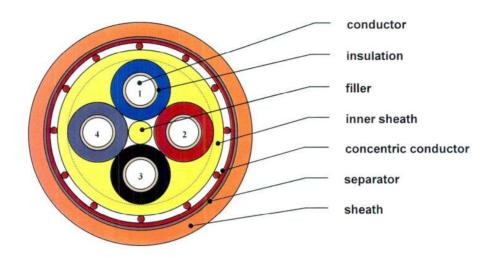
C€ = the cable meets requirements of the low voltage directive 2006/95/WE

Article No.	Number of conductors x conductor cross-section	Cable outer diameter (appr.)	Copper index	Cable weight (appr.)	Article No.	Number of conductors x conductor cross-section	Cable outer diameter (appr.)	Copper index	Cable weight (appr.)
	mm ²	mm	kg/km	kg/km		mm ²	mm	kg/km	kg/km
Some and	1 x 6,0 RE	8,4	58,0	125		3 x 16 RE	22,0	461,0	980
	1 x 10 RE	9,4	96,0	170		3 x 25 RM	25,5	720,0	1390
	1 x 16 RE	10,4	154,0	250		4 x 1,5 RE	15,7	58,0	350
	1 x 25 RM	12,4	240,0	355		4 x 2,5 RE	16,7	96,0	420
	1 x 35 RM	13,4	336,0	450		4 x 4,0 RE	17,8	154,0	510
	1 x 50 RM	14,5	480,0	580		4 x 6,0 RE	19,0	230,0	625
	1 x 70 RM	16,4	672,0	790		4 x 10 RE	20,9	384,0	835
	1 x 95 RM	18,1	912,0	1040	and the second second	4 x 16 RM	23,7	614,0	1140
	1 x 120 RM	19,7	1152,0	1275		4 x 25 RM	27,8	960,0	1720
	2 x 1,5 RE	14,0	28,8	265		4 x 35 RM	29,5	1344,0	2050
	2 x 2,5 RE	14,8	48,0	315		4 x 50 RM	32,7	1920,0	2660
	2 x 4,0 RE	15,7	77,0	375		5 x 1,5 RE	17,2	72,0	425
	2 x 6,0 RE	16,7	115,0	445		5 x 2,5 RE	18,2	120,0	505
	2 x 10 RE	18,4	192,0	585		5 x 4,0 RE	19,3	192,0	610
	2 x 16 RE	20,4	307,0	780		5 x 6,0 RE	20,7	288,0	750
	2 x 25 RM	24,0	480,0	925	Contraction of the Second Second	5 x 10 RE	22,7	480,0	1000
	3 x 1,5 RE	14,9	43,2	315		5 x 16 RE	26,3	768,0	1460
	3 x 2,5 RE	15,5	72,0	355	A STREET STREET	5 x 25 RM	30,6	1200,0	2100
STILL NO. SAID	3 x 4,0 RE	16,5	115,0	435		5 x 35 RM	32,9	1680,0	2550
	3 x 6,0 RE	17,6	173,0	525	Part States	5 x 50 RM	37,7	2400,0	3550
	3 x 10 RE	19,3	288,0	690		7 x 1,5 RE	18,1	101,0	475

RE - single wire round conductor; RM - multiwire round conductor

Other cross-sections and conductor counts available on request.

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87


www.technokabel.com.pl export@technokabel.com.pl

K074A02B

FIRE RESISTANT HALOGEN FREE POWER CABLES

APPLICATIONS

NHXCH FE180 PH90/E90 0.6/1 kV fire resistant power cables, insulated and sheathed with halogen free compounds, are intended for power supply to fire protection equipment which is to operate in fire conditions (e.g. water pumps in fire extinguishing systems, smoke removing fans).

Halogen free cables shall be applied in locations where, in case of fire, higher safety for human beings and expensive electronic equipment is required.

Functions of the cables are maintained - power is supplied to equipment which must operate in fire conditions and during fire fighting. The cables are flame retardant and their smoke emission is low, emitted fumes are non toxic and non corrosive.

The cables are certified by Scientific and Research Development Centre for Fire Protection (Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej) at Józefów - Certificate of Conformity No. 2412/2007.

The cables are suitable for indoor and outdoor installations.

CONSTRUCTION

conductor	-	bare copper, solid or stranded according to PN-EN 60228, EN 60228,
insulation	-	mica tape and halogen free cross-linked compound insulation - colours in accordance with PN-HD 308,
filler	-	filler made of halogen free compound,
inner sheath	° — °	inner sheath made of halogen free compound,
concentric conductor	-	concentric conductor made of bare copper wires and a copper tape binder wrapped over the inner sheath,
separator	-	polyester tape,
sheath	-	orange, cable sheath made of halogen free compound according to HD 604 S1 and VDE 0276-604 – HM4, (oxygen index bigger than 35%).

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87

www.technokabel.com.pl export@technokabel.com.pl K170A02B

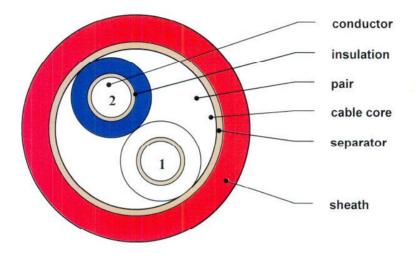
The cables maintain their functions for 90 minutes, meeting requirements of DIN 4102-12 and PN-EN 50200 standards

	Cond	luctor cross-section			
Number of conducto	ors	Nominal conductor cross-section			
no			mm ²		
1		1	6 ÷ 400		
2 - 5		1	1 ÷ 240		
7 – 19		1; 1	.5; 2.5 i 4		
24 - 40		1; 1.5; 2.5			
Operating voltage Voltage test	0.6/1 kV 4.0 kV rms	Operating temperature rang during operation during installation	e from -15 to +90°C from -5 to +70°C		
Insulation resistivity at 90°C, minimum	1 x 10 ¹¹ Ω⋅cm	Minimum bending radius	12 x cable diameter		
Inductance, approximate Corrosivity of emitted gases per	0.7 mH/km	Cable combustibility Circuit integrity *	flame retardant		
PN-EN 50267-2-3, IEC 60754-2 pH, approximate	6.8	E90 PH90	DIN 4102-12 PN-EN 50200 or PN-EN 50362		
conductivity, approximate	0.4 µS/mm	Insulation integrity FE180	IEC 60331-21; IEC 60331-11		
Smoke density per PN-EN 50268-2-3, IEC 61034-2 light transmittance, minimum	94%	Combustibility tests	PN-EN 50266-2-4, IEC 60332-3-24, PN-EN 50200 and PN-EN 50362		
ngin transmittance, minimum	0470	Reference standards	AT-0603-0064/2006, WT-TK-44 DIN VDE 0266		

PN-HD 604 S1 Circuit integrity is dependent on installation method.

CE = the cable meets requirements of the low voltage directive 2006/95/WE

Article No.	Number of conductors x conductor cross-section	Cable outer diameter (appr.)	Copper index	Cable weight (appr.)	Article No.	Number of conductors x conductor cross-section	Cable outer diameter (appr.)	Copper index	Cable weight (appr.)
	mm ²	mm	kg/km	kg/km		mm ²	mm	kg/km	kg/km
	3 x 1,5RE/1,5	16,6	43.2	360		4 x 6,0 RE/6,0	22,3	230	770
	3 x 2,5 RE/2,5	17,7	72	430		4 x 10 RE/10	25,1	384	1140
A LE STATE	3 x 4,0 RE/4,0	18,8	115	520	A STREET	4 x 16 RE/16	26,2	614	1340
	3 x 6,0 RE/6,0	20,8	173	660		4 x 25 RM/16	32,8	960	2100
	3 x 10 RE/10	23,8	288	940	Same of the second	4 x 35 RE/16	35,6	1498	2610
	3 x 16 RE/16	26,2	461	1340		4 x 50 RM/25	35,4	2160	2950
	3 x 25 RM/16	30,4	720	1750	A REAL PROPERTY OF			a state to the second	a Stranger
	3 x 35 RM/16	33,0	1190	2160		7 x 1,5RE/2,5	20,7	101	580
	3 x 50 RM/25	37,0	1723	2840		7 x 2,5 RE/2,5	21,9	168	690
	4 x 1,5RE/1,5	16,8	81	390					
and good and	4 x 2,5 RE/2,5	19,0	96	500	AND TRACK	12 x 1,5RE/2,5	25,9	101	935
	4 x 4,0 RE/4,0	20,1	154	600		12 x 2,5 RE/4,0	27,9	168	1150


RE - single wire round conductor; RM - multiwire round conductor Other cross-sections and conductor counts available on request.

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87 www.technokabel.com.pl export@technokabel.com.pl

K170A02B

FIRE RESISTANT HALOGEN FREE CABLES

APPLICATIONS

HTKSH FE180 PH90/E30-E90 fire resistant and halogen free cables are intended for installation in alarm, signalling, transmission, sound warning and similar systems, also for data processing systems and for analogue or digital data transmission in industrial electronics and control applications in objects of sharp fire protection requirements, particularly in fire alarm and fire automatic control systems.

Halogen free cables are applied in locations where, in case of fire, higher safety for human beings and expensive electronic equipment is required.

Functions of the cables are maintained – data are transmitted and power is supplied to equipment which must operate in fire conditions and during fire fighting (e.g. emergency lighting). The cables are flame retardant and their smoke emission is low, emitted fumes are non toxic and non corrosive.

The cables are suitable for indoor installations.

CONSTRUCTION

conductor	-	bare copper, solid,
insulation	-	mica tape and halogen free compound insulation - colours in accordance with PN-92/T- 90321 standard,
pair	- <u>-</u>	insulated conductors twisted into pairs,
cable core	-	pairs laid-up into a cable core,
separator	-	polyester tape,
sheath	-	red, cable sheath made of halogen free compound according to EN 50290-2-27 and VDE 0250-214 – HM2, (oxygen index bigger than 35%).

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87 www.technokabel.com.pl export@technokabel.com.pl K214A02B

HTKSH FE180 PH90/E30-E90

CHARACTERISTICS

The cables maintain their functions for 90 minutes, meeting requirements of DIN 4102-12 and PN-EN 50200 standards

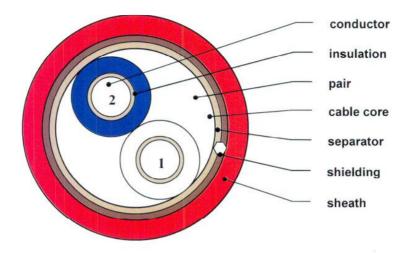
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Conductor diameter	mm	0.8	1.0	1.4	1.8	2.3	2.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Conductor cross-section	mm ²	0.5	0.75	1.5	2.5	4	6	
conductors at 1 kHzaverage nF/km 120 <td>DC loop resistance at 20°C, max</td> <td>kimum</td> <td>Ω/km</td> <td>75</td> <td>48</td> <td>24.5</td> <td>14.9</td> <td>9.3</td> <td>6.3</td>	DC loop resistance at 20°C, max	kimum	Ω/km	75	48	24.5	14.9	9.3	6.3
conductors at 1 kHzaverage607070701001Operating voltage240 VOperating temperature range during operation during installationfrom - 30 to + 80°C from - 5 to + 70°C/oltage test1.5 kV rms00 MΩ·km00 mΩ·kmfrom - 5 to + 70°Cnductance, approximate0.7 mH/km0.7 mH/km10 x cable diameterCorrosivity of emitted gases per PN-EN 50267-2-3, IEC 60754-2 pH, approximate0.7 mH/kmCombustibilityflame retardantCombustibility testsPN-EN 60332-1-2Circuit integrity*DIN 4102-12 PN-EN 50200 or EN 5036Smoke density per PN-EN 50268-2-3, IEC 61034-2 light transmittance, minimum94%Insulation integrity FE180 Reference standardsIEC 60331-21; IEC 60331-	Capacitance between	maximum		120	120	120	120	120	120
Voltage test1.5 kV rmsduring operation during installationfrom - 30 to + 80°C from - 5 to + 70°Cnsulation resistance, minimum100 MΩ·kmMinimum bending radius10 x cable diameternductance, approximate0.7 mH/kmCable combustibilityflame retardantCorrosivity of emitted gases per PN-EN 50267-2-3, IEC 60754-2 pH, approximate6.8Circuit integrity*New 6 density per PN-EN 50268-2-3, IEC 61034-2 light transmittance, minimum94%E30-E90 PH90DIN 4102-12 PN-EN 50200 or EN 5036Insulation integrity FE180 PN-92/T-90320 PN-92/T-90321IEC 60331-21; IEC 60331-	conductors at 1 kHz	average	nF/km	60	70	70	70	100	100
PN-92/T-90320 PN-92/T-90321	/oltage test nsulation resistance, minimum nductance, approximate Corrosivity of emitted gases per PN-EN 50267-2-3, IEC 60754-2 pH, approximate conductivity, approximate Smoke density per PN-EN 50268-2-3, IEC 61034-2	1.5 kV rms 100 MΩ·km 0.7 mH/km 6.8 0.4 μS/mm	Operating temperature range during operation during installationfrom - 30 to + from - 5 to +Minimum bending radius10 x cable diaCable combustibility Combustibility testsflame retardarCombustibility testsPN-EN 60332Circuit integrity*E30-E90 PH90DIN 4102-12 PN-EN 50200Insulation integrity FE180IEC 60331-21		5 to + 7 ble diam tardant 50332-1 22-12 50200 c 31-21; l	80°C ro°C heter t 1-2 or EN 50362			
*					1	PN-92/T	-90320		

Circuit integrity is dependent on installation method.

C€ = the cable meets requirements of the low voltage directive 2006/95/WE

Cable type			Copper index	Cable weight (appr.)	
	mm	mm	kg/km	kg/km	
HTKSH FE180 PH90/E30-E90	1 x 2 x 0.8	6.5	15	61	
HTKSH FE180 PH90/E30-E90	1 x 2 x 1,0	7.7	20	70	

Other diameters and conductor counts available on request.


FIRES S.T.O. POŽIARNA ODOLNOSŤ FIRE RESISTANCE	Dátum/Date 25. 04. 2008 Juneon Podpis/Signature
Dokument č. Document No. FINES-,	FR-151-08-ANE
Príloha č./Appendix No.	57

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87 www.technokabel.com.pl export@technokabel.com.pl

K214A02B

FIRE RESISTANT HALOGEN FREE CABLES

APPLICATIONS

HTKSHekw FE180 PH90/E30-E90 fire resistant and halogen free cables are intended for installation in alarm, signalling, transmission, sound warning and similar systems, also for data processing systems and for analogue or digital data transmission in industrial electronics and control applications in objects of sharp fire protection requirements, particularly in fire alarm and fire automatic control systems.

Halogen free cables are applied in locations where, in case of fire, higher safety for human beings and expensive electronic equipment is required.

Functions of the cables are maintained – data are transmitted and power is supplied to equipment which must operate in fire conditions and during fire fighting (e.g. emergency lighting). The cables are flame retardant and their smoke emission is low, emitted fumes are non toxic and non corrosive.

Cable circuits are protected by an overall electrostatic shield against external electric field interferences.

The cables are suitable for indoor installations.

CONSTRUCTION

conductor	-	bare copper, solid,
insulation	-	mica tape and halogen free compound insulation - colours in accordance with PN-92/T- 90321 standard,
pair	-	insulated conductors twisted into pairs,
cable core	-	pairs laid-up into a cable core,
separator	-	polyester tape,
shielding	-	overall electrostatic shield incorporating a plastic laminated metal foil and a tinned copper drain wire Ø 0.8 mm,
sheath	-	red, cable sheath made of halogen free compound according to EN 50290-2-27 and VDE 0250-214 – HM2, (oxygen index bigger than 35%).

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87 www.technokabel.com.pl export@technokabel.com.pl

K215A02B

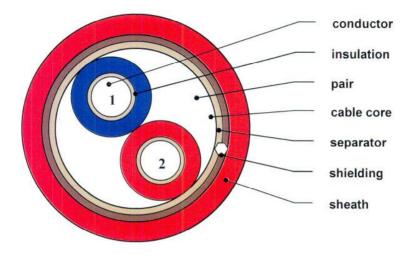
The cables maintain their functions for 90 minutes, meeting requirements of DIN 4102-12 and PN-EN 50200 standards

Conductor diameter Conductor cross-section DC loop resistance at 20°C, maximum			1.0	1.4	1.8	2.3	2.8	
			0.75 48	1.5 24.5	2.5 14.9	4 9.3	6 6.3	
								maximum
average	90	130	130	130	150	150		
conductors at 1 kHz average Operating voltage 240 V Voltage test 1.5 kV rms Insulation resistance, minimum 100 MΩ·km Inductance, approximate 0.7 mH/km Corrosivity of emitted gases per PN-EN 50267-2-3, IEC 60754-2 pH, approximate 6.8 conductivity, approximate 0.4 µS/mm Smoke density per PN-EN 50268-2-3, IEC 61034-2 light transmittance, minimum 94%		Operating temperature ran during operation during installation Minimum bending radius Cable combustibility Combustibility tests Circuit integrity E30-E90 PH90 Insulation integrity FE180		ge from - 30 to + 80°C from - 5 to + 70°C 10 x cable diameter flame retardant PN-EN 60332-1-2 DIN 4102-12 PN-EN 50200 or EN 50362 IEC 60331-21; IEC 60331-11				
	maximum average 240 V 1.5 kV rms 100 MΩ·km 0.7 mH/km 6.8 0.4 µS/mm	maximum nF/km average 0perating temp 240 V Operating temp 1.5 kV rms during oper 100 MΩ·km Minimum bendi 0.7 mH/km Cable combust 6.8 Circuit integrity 0.4 µS/mm E30-E90 94% Insulation integrity	mm² 0.5 kimum Ω/km 75 maximum nF/km 200 average nF/km 90 240 V Operating temperature during operation during installation 100 MΩ·km 0.7 mH/km 0.7 mH/km Cable combustibility tests 6.8 Circuit integrity 0.4 µS/mm E30-E90 PH90	$\begin{tabular}{ c c c c c c } \hline mm^2 & 0.5 & 0.75 \\ \hline mm^2 & 0.5 & 0.75 \\ \hline 0.75 & 48 \\ \hline \end{tabular} ta$	$\begin{tabular}{ c c c c c c } \hline mm^2 & 0.5 & 0.75 & 1.5 \\ \hline maximum & Ω/km & 75 & 48 & 24.5 \\ \hline maximum & nF/km & $200 & 200 & 200 \\ \hline average & 0^{-1} & $130 & 130 \\ \hline $240 V$ & 0 Operating temperature range \\ during operation \\ 1.5 kV rms \\ 100 M\Omega \cdot km \\ 0.7 mH/km & 0 Operating temperature range \\ during installation & $from - 3$ \\ during installation & $from - 3$ \\ during installation & $from - 3$ \\ during operation \\ during installation & $from - 3$ \\ during installation & $from - 3$ \\ during operation \\ 0.7 mH/km & 0 Operating temperature range \\ 0.7 mH/km & 0 Operating temperature range \\ 0.7 mH/km & 0 Operating temperature range \\ Cable combustibility & $flame re \\ Combustibility tests & $PN-EN e \\ Combustibility tests & $PN-EN e \\ 0.4 \ \mu S/mm & $E30-E90$ & $DIN 410$ \\ $PH90$ & $PN-EN e \\ 94\% & $Insulation integrity FE180$ & $IEC 603$ \\ Reference standards & $WT-TK-$ \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

^{*}Circuit integrity is dependent on installation method.

 $\zeta \in$ = the cable meets requirements of the low voltage directive 2006/95/WE

Cable type	Number of pairs (x 2) x conductor diameter	Cable outer diameter (appr.)	Copper index	Cable weight (appr.)	
	mm	mm	kg/km	kg/km	
HTKSHekw FE180 PH90/E30-E90	1 x 2 x 0.8	7.4	15	66	
HTKSHekw FE180 PH90/E30-E90	1 x 2 x 1.0	7.8	20	75	


Other diameters and conductor counts available on request.

FIRES s.r.o. POŽIARNA ODOLNOSŤ FIRE RESISTANCE	Dátum/Date 25. 0.9. 2008 Juan Podpis/Signature
Dokument č. FIRES- Document No.	FR- 151-08- AWE
Príloha č./Appendix No.	53

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87 www.technokabel.com.pl export@technokabel.com.pl K215A02B

FIRE RESISTANT HALOGEN FREE CABLES

APPLICATIONS

JE-H(St)H...Bd FE180 PH90/E30-E90 fire resistant and halogen free cables are intended for installation in alarm, signalling, transmission, sound warning and similar systems, also for data processing systems and for analogue or digital data transmission in industrial electronics and control applications in objects of sharp fire protection requirements, particularly in fire alarm and fire automatic control systems.

Halogen free cables are applied in locations where, in case of fire, higher safety for human beings and expensive electronic equipment is required.

Functions of the cables are maintained – data are transmitted and power is supplied to equipment which must operate in fire conditions and during fire fighting (e.g. emergency lighting). The cables are flame retardant and their smoke emission is low, emitted fumes are non toxic and non corrosive.

Cable circuits are protected by an overall electrostatic shield against external electric field interferences.

The cables are suitable for indoor installations.

CONSTRUCTION

conductor	_	bare copper, solid,
insulation	-	mica tape and halogen free compound insulation - colours in accordance with PN-92/T- 90321 standard,
pair	-	insulated conductors twisted into pairs,
cable core	-	pairs laid-up into a cable core,
separator	-	polyester tape,
shielding	-	overall electrostatic shield incorporating a plastic laminated metal foil and a tinned copper drain wire,
sheath	-	red, cable sheath made of halogen free compound according to EN 50290-2-27 and VDE 0250-214 – HM2, (oxygen index bigger than 35%).

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87 www.technokabel.com.pl export@technokabel.com.pl

K216A01A

TECHNOKABEL[®]

JE-H(St)H...Bd FE180 PH90/E30-E90

CHARACTERISTICS

The cables maintain their functions for 90 minutes, meeting requirements of DIN 4102-12 and PN-EN 50200 standards

Conductor diameter	mm	0.8	1.0	1.4	1.8	2.3	2.8		
Conductor cross-section	mm ² Ω/km	0.5	0.75 48	1.5 24.5	2.5 14.9	4 9.3	6 6.3		
DC loop resistance at 20°C, max		75							
Capacitance between	maximum	nF/km	200	200	200	200	200	200	
conductors at 1 kHz	average		90	130	130	130	150	150	
Dperating voltage Voltage test nsulation resistance, minimum nductance, approximate Corrosivity of emitted gases per PN-EN 50267-2-3, IEC 60754-2 pH, approximate conductivity, approximate	Operating temperature range during operation during installation Minimum bending radius Cable combustibility Combustibility tests Circuit integrity			e from - 30 to + 80°C from - 5 to + 70°C 10 x cable diameter flame retardant PN-EN 60332-1-2 DIN 4102-12					
Smoke density per PN-EN 50268-2-3, IEC 61034-2 light transmittance, minimum	94%	Insulation integ	PH90 Insulation integrity FE180 Reference standards			PN-EN 50200 or EN 50362 IEC 60331-21; IEC 60331-17 VDE 0815			

Circuit integrity is dependent on installation method.

$\zeta \in$ = the cable meets requirements of the low voltage directive 2006/95/WE

Cable type	Number of pairs (x 2) x conductor diameter	Cable outer diameter (appr.)	Copper index	Cable weigh (appr.)	
	mm	mm	kg/km	kg/km	
JE-H(St)H FE180 PH90/E30-E90	1 x 2 x 0,8 Bd	7.4	15	66	

Other diameters and conductor counts available on request.

FIRES s.r.o. POŽIARNA ODOLNOSŤ FIRE RESISTANCE	Dátum/Date 25.09.2008 June Podpis/Signature
Dokument č. Document No. FIRES-	FR- 157-08- AUNE
Príleha ő./Appendix No.	55

TECHNOKABEL SA, 04-343 Warszawa, ul. Nasielska 55, POLAND Export Department: tel +(48 22) 516 97 67, fax +(48 22) 516 97 87 www.technokabel.com.pl export@technokabel.com.pl

K216A01A